Z. Arany, S. Foo, Y. Ma, J. Ruas, A. Bommi-reddy et al., HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1??, Nature, vol.10, issue.7181, pp.1008-1012, 2008.
DOI : 10.1128/MCB.17.9.5400

S. Baker, K. Mccullagh, and A. Bonen, Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle, J Appl Physiol, vol.84, pp.987-994, 1998.

E. Barreiro and S. Hussain, Protein Carbonylation in Skeletal Muscles: Impact on Function, Antioxidants & Redox Signaling, vol.12, issue.3, pp.417-429, 2010.
DOI : 10.1089/ars.2009.2808

H. Becker, S. Broer, and J. Deitmer, Facilitated Lactate Transport by MCT1 when Coexpressed with the Sodium Bicarbonate Cotransporter (NBC) in Xenopus Oocytes, Biophysical Journal, vol.86, issue.1, pp.235-247, 2004.
DOI : 10.1016/S0006-3495(04)74099-0

H. Becker and J. Deitmer, / Cotransporter, Journal of Biological Chemistry, vol.277, issue.18, pp.13508-13521, 2007.
DOI : 10.1021/bi992564p

H. Becker, D. Hirnet, C. Fecher-trost, D. Sultemeyer, and J. Deitmer, Oocytes Is Increased by Interaction with Carbonic Anhydrase, Journal of Biological Chemistry, vol.276, issue.48, pp.39882-39889, 2005.
DOI : 10.1074/jbc.M403099200

H. Becker, M. Klier, and J. Deitmer, Nonenzymatic Augmentation of Lactate Transport via Monocarboxylate Transporter Isoform 4 by Carbonic Anhydrase II, Journal of Membrane Biology, vol.449, issue.2, pp.125-135, 2010.
DOI : 10.1113/jphysiol.1992.sp019074

D. Bentley, B. Roels, C. Thomas, R. Ives, J. Mercier et al., The relationship between monocarboxylate transporters 1 and 4 expression in skeletal muscle and endurance performance in athletes, European Journal of Applied Physiology, vol.273, issue.26, pp.465-471, 2009.
DOI : 10.1249/00005768-199207000-00008

C. Benton, S. Campbell, M. Tonouchi, H. Hatta, and A. Bonen, Monocarboxylate transporters in subsarcolemmal and intermyofibrillar mitochondria, Biochemical and Biophysical Research Communications, vol.323, issue.1, pp.249-253, 2004.
DOI : 10.1016/j.bbrc.2004.08.084

C. Benton, Y. Yoshida, J. Lally, X. Han, H. Hatta et al., PGC-1?? increases skeletal muscle lactate uptake by increasing the expression of MCT1 but not MCT2 or MCT4, Physiological Genomics, vol.35, issue.1, pp.45-54, 2008.
DOI : 10.1152/physiolgenomics.90217.2008

B. Bergman, M. Horning, G. Casazza, E. Wolfel, G. Butterfield et al., Endurance training increases gluconeogenesis during rest and exercise in men, Am J Physiol Endocrinol Metab, vol.278, pp.244-251, 2000.

B. Bergman, E. Wolfel, G. Butterfield, G. Lopaschuk, G. Casazza et al., Active muscle and whole body lactate kinetics after endurance training in men, J Appl Physiol, vol.87, pp.1684-1696, 1999.

D. Bickham, D. Bentley, L. Rossignol, P. Cameron-smith, and D. , The effects of short-term sprint training on MCT expression in moderately endurance-trained runners, European Journal of Applied Physiology, vol.546, issue.Pt 2, pp.636-643, 2006.
DOI : 10.1152/japplphysiol.00257.2003

A. Bigard, P. Douce, D. Merino, F. Lienhard, and C. Guezennec, Changes in dietary protein intake fail to prevent decrease in muscle growth induced by severe hypoxia in rats, J Appl Physiol, vol.80, pp.208-215, 1996.

D. Bishop, J. Edge, A. Mendez-villanueva, C. Thomas, and K. Schneiker, High-intensity exercise decreases muscle buffer capacity via a decrease in protein buffering in human skeletal muscle, Pfl??gers Archiv - European Journal of Physiology, vol.147, issue.4, pp.929-936, 2009.
DOI : 10.1042/bj1470605

D. Bishop, J. Edge, C. Thomas, and J. Mercier, Effects of high-intensity training on muscle lactate transporters and postexercise recovery of muscle lactate and hydrogen ions in women, AJP: Regulatory, Integrative and Comparative Physiology, vol.295, issue.6, pp.1991-1998, 2008.
DOI : 10.1152/ajpregu.00863.2007

D. Bishop, J. Edge, C. Thomas, and J. Mercier, High-intensity exercise acutely decreases the membrane content of MCT1 and MCT4 and buffer capacity in human skeletal muscle, Journal of Applied Physiology, vol.102, issue.2, pp.616-621, 2007.
DOI : 10.1152/japplphysiol.00590.2006

A. Bonen, The expression of lactate transporters (MCT1 and MCT4) in heart and muscle, European Journal of Applied Physiology, vol.86, issue.1, pp.6-11, 2001.
DOI : 10.1007/s004210100516

A. Bonen, S. Baker, and H. Hatta, Lactate Transport and Lactate Transporters in Skeletal Muscle, Canadian Journal of Applied Physiology, vol.22, issue.6, pp.531-552, 1997.
DOI : 10.1139/h97-034

A. Bonen, K. Mccullagh, C. Putman, E. Hultman, N. Jones et al., Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate, Am J Physiol Endocrinol Metab, vol.274, pp.102-107, 1998.

A. Bonen, J. Mcdermott, and M. Tan, Glycogenesis and glyconeogenesis in skeletal muscle: effects of pH and hormones, Am J Physiol Endocrinol Metab, vol.258, pp.693-700, 1990.

A. Bonen, D. Miskovic, M. Tonouchi, K. Lemieux, M. Wilson et al., Abundance and subcellular distribution of MCT1 and MCT4 in heart and fast-twitch skeletal muscles, Am J Physiol Endocrinol Metab, vol.278, pp.1067-1077, 2000.

A. Bonen, M. Tonouchi, D. Miskovic, C. Heddle, J. Heikkila et al., Isoform-specific regulation of the lactate transporters MCT1 and MCT4 by contractile activity, Am J Physiol Endocrinol Metab, vol.279, pp.1131-1138, 2000.

S. Broer, A. Broer, H. Schneider, C. Stegen, A. Halestrap et al., Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes, Biochemical Journal, vol.341, issue.3, pp.529-535, 1999.
DOI : 10.1042/0264-6021:3410529

G. Brooks, Cell-cell and intracellular lactate shuttles, The Journal of Physiology, vol.29, issue.23, pp.5591-5600, 2009.
DOI : 10.1038/jcbfm.2009.35

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2009.178350/pdf

G. Brooks, Intra- and extra-cellular lactate shuttles, Medicine & Science in Sports & Exercise, vol.32, issue.4, pp.790-799, 2000.
DOI : 10.1097/00005768-200004000-00011

G. Brooks, Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise, Fed Proc, vol.45, pp.2924-2929, 1986.

G. Brooks, Lactate shuttles in Nature, Biochemical Society Transactions, vol.30, issue.2, pp.258-264, 2002.
DOI : 10.1042/bst0300258

M. Brown and G. Brooks, Trans-Stimulation of Lactate Transport from Rat Sarcolemmal Membrane Vesicles, Archives of Biochemistry and Biophysics, vol.313, issue.1, pp.22-28, 1994.
DOI : 10.1006/abbi.1994.1353

K. Burgomaster, N. Cermak, S. Phillips, C. Benton, A. Bonen et al., Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining, AJP: Regulatory, Integrative and Comparative Physiology, vol.292, issue.5, pp.1970-1976, 2007.
DOI : 10.1152/ajpregu.00503.2006

K. Burgomaster, S. Hughes, G. Heigenhauser, S. Bradwell, and M. Gibala, Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans, Journal of Applied Physiology, vol.98, issue.6, pp.1985-1990, 2005.
DOI : 10.1152/japplphysiol.01095.2004

J. Chwalbinska-moneta, R. Robergs, D. Costill, and W. Fink, Threshold for muscle lactate accumulation during progressive exercise, J Appl Physiol, vol.66, pp.2710-2716, 1989.

S. Clarke, I. Khaliulin, M. Das, J. Parker, K. Heesom et al., Inhibition of Mitochondrial Permeability Transition Pore Opening by Ischemic Preconditioning Is Probably Mediated by Reduction of Oxidative Stress Rather Than Mitochondrial Protein Phosphorylation, Circulation Research, vol.102, issue.9, pp.1082-1090, 2008.
DOI : 10.1161/CIRCRESAHA.107.167072

L. Coles, J. Litt, H. Hatta, and A. Bonen, Exercise rapidly increases expression of the monocarboxylate transporters MCT1 and MCT4 in rat muscle, The Journal of Physiology, vol.279, issue.1, pp.253-261, 2004.
DOI : 10.1074/jbc.273.26.15920

K. Davies, A. Quintanilha, G. Brooks, and L. Packer, Free radicals and tissue damage produced by exercise, Biochemical and Biophysical Research Communications, vol.107, issue.4, pp.1198-1205, 1982.
DOI : 10.1016/S0006-291X(82)80124-1

K. Dimmer, B. Friedrich, F. Lang, J. Deitmer, and S. Broer, The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells, Biochemical Journal, vol.350, issue.1, pp.219-227, 2000.
DOI : 10.1042/bj3500219

C. Donovan and M. Pagliassotti, Quantitative assessment of pathways for lactate disposal in skeletal muscle fiber types, Medicine & Science in Sports & Exercise, vol.32, issue.4, pp.772-777, 2000.
DOI : 10.1097/00005768-200004000-00009

H. Dubouchaud, G. Butterfield, E. Wolfel, B. Bergman, and G. Brooks, Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle, Am J Physiol Endocrinol Metab, vol.278, pp.571-579, 2000.

H. Dubouchaud, N. Eydoux, P. Granier, C. Prefaut, and J. Mercier, Lactate transport activity in rat skeletal muscle sarcolemmal vesicles after acute exhaustive exercise, J Appl Physiol, vol.87, pp.955-961, 1999.

H. Dubouchaud, P. Granier, J. Mercier, L. Peuch, C. Prefaut et al., Lactate uptake by skeletal muscle sarcolemmal vesicles decreases after 4 wk of hindlimb unweighting in rats, J Appl Physiol, vol.80, pp.416-421, 1996.

T. Enoki, Y. Yoshida, H. Hatta, and A. Bonen, Exercise training alleviates MCT1 and MCT4 reductions in heart and skeletal muscles of STZ-induced diabetic rats, Journal of Applied Physiology, vol.94, issue.6, pp.2433-2438, 2003.
DOI : 10.1152/japplphysiol.01155.2002

T. Enoki, Y. Yoshida, J. Lally, H. Hatta, and A. Bonen, Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle, The Journal of Physiology, vol.97, issue.1, pp.433-443, 2006.
DOI : 10.1152/japplphysiol.01347.2003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2000663

F. Evertsen, J. Medbo, and A. Bonen, Effect of training intensity on muscle lactate transporters and lactate threshold of cross-country skiers, Acta Physiologica Scandinavica, vol.125, issue.2, pp.195-205, 2001.
DOI : 10.1074/jbc.273.26.15920

N. Eydoux, H. Dubouchaud, G. Py, P. Granier, C. Prefaut et al., Lactate Transport in Rat Sarcolemmal Vesicles After a Single Bout of Submaximal Exercise, International Journal of Sports Medicine, vol.21, issue.6, pp.393-399, 2000.
DOI : 10.1055/s-2000-3830

N. Eydoux, G. Py, K. Lambert, H. Dubouchaud, C. Prefaut et al., Training does not protect against exhaustive exercise-induced lactate transport capacity alterations, Am J Physiol Endocrinol Metab, vol.278, pp.1045-1052, 2000.

P. Fournier, L. Brau, L. Ferreira, T. Fairchild, G. Raja et al., Glycogen resynthesis in the absence of food ingestion during recovery from moderate or high intensity physical activity: novel insights from rat and human studies, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.133, issue.3, pp.755-763, 2002.
DOI : 10.1016/S1095-6433(02)00254-4

H. Freund, S. Oyono-enguelle, A. Heitz, J. Marbach, C. Ott et al., Work rate-dependent lactate kinetics after exercise in humans, J Appl Physiol, vol.61, pp.932-939, 1986.
DOI : 10.1159/000408773

A. Friedlander, G. Casazza, M. Horning, M. Huie, and G. Brooks, Training-induced alterations of glucose flux in men, J Appl Physiol, vol.82, pp.1360-1369, 1997.

M. Furtado, V. Poon, and A. Klip, GLUT4 activation: thoughts on possible mechanisms, Acta Physiologica Scandinavica, vol.46, issue.1, pp.287-296, 2003.
DOI : 10.1128/MCB.19.6.4008

C. Garcia, J. Goldstein, R. Pathak, R. Anderson, and M. Brown, Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: Implications for the Cori cycle, Cell, vol.76, issue.5, pp.865-873, 1994.
DOI : 10.1016/0092-8674(94)90361-1

C. Geers and G. Gros, Carbon dioxide transport and carbonic anhydrase in blood and muscle, Physiol Rev, vol.80, pp.681-715, 2000.

E. Gertz, J. Wisneski, W. Stanley, and R. Neese, Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments., Journal of Clinical Investigation, vol.82, issue.6, pp.2017-2025, 1988.
DOI : 10.1172/JCI113822

URL : http://www.jci.org/articles/view/113822/files/pdf

L. Gladden, Lactate metabolism: a new paradigm for the third millennium, The Journal of Physiology, vol.32, issue.suppl., pp.5-30, 2004.
DOI : 10.1002/1098-1136(200012)32:3<286::AID-GLIA80>3.0.CO;2-P

H. Green, A. Halestrap, C. Mockett, O. Toole, D. Grant et al., Increases in muscle MCT are associated with reductions in muscle lactate after a single exercise session in humans, Am J Physiol Endocrinol Metab, vol.282, pp.154-160, 2002.

H. Green, T. Duhamel, G. Holloway, J. Moule, D. Ranney et al., Rapid upregulation of GLUT-4 and MCT-4 expression during 16 h of heavy intermittent cycle exercise, AJP: Regulatory, Integrative and Comparative Physiology, vol.294, issue.2, pp.594-600, 2008.
DOI : 10.1152/ajpregu.00699.2007

A. Halestrap and R. Denton, ), Biochemical Journal, vol.138, issue.2, pp.313-316, 1974.
DOI : 10.1042/bj1380313

A. Halestrap and D. Meredith, The SLC16 gene family?from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond, Pfl???gers Archiv European Journal of Physiology, vol.447, issue.5, pp.619-628, 2004.
DOI : 10.1007/s00424-003-1067-2

M. Hargreaves, M. Mckenna, D. Jenkins, S. Warmington, J. Li et al., Muscle metabolites and performance during high-intensity, intermittent exercise, J Appl Physiol, vol.84, pp.1687-1691, 1998.

T. Hashimoto and G. Brooks, Mitochondrial Lactate Oxidation Complex and an Adaptive Role for Lactate Production, Medicine & Science in Sports & Exercise, vol.40, issue.3, pp.486-494, 2008.
DOI : 10.1249/MSS.0b013e31815fcb04

T. Hashimoto, R. Hussien, S. Oommen, K. Gohil, and G. Brooks, Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis, The FASEB Journal, vol.21, issue.10, pp.2602-2612, 2007.
DOI : 10.1096/fj.07-8174com

H. Hirche, D. Grun, and W. Waller, Utilization of carbohydrates and free fatty acids by the gastrocnemius of the dog during long lasting rhythmical exercise, Pfl???gers Archiv European Journal of Physiology, vol.26, issue.2, pp.121-132, 1970.
DOI : 10.1007/BF00586367

M. Hogan, L. Gladden, S. Kurdak, and D. Poole, Increased [lactate] in working dog muscle reduces tension development independent of pH, Medicine & Science in Sports & Exercise, vol.27, issue.3
DOI : 10.1249/00005768-199503000-00013

E. Hultman and K. Sahlin, Acid-base balance during exercise, Exerc Sport Sci Rev, vol.8, pp.41-128, 1980.

E. Johannsson, P. Lunde, C. Heddle, I. Sjaastad, M. Thomas et al., Upregulation of the Cardiac Monocarboxylate Transporter MCT1 in a Rat Model of Congestive Heart Failure, Circulation, vol.104, issue.6, pp.729-734, 2001.
DOI : 10.1161/hc3201.092286

L. Jorfeldt, Metabolism of L(plus)-lactate in human skeletal muscle during exercise, Acta Physiol Scand, vol.338, pp.1-67, 1970.

C. Juel, the involvement of sodium/proton exchange and a lactate carrier, Acta Physiologica Scandinavica, vol.257, issue.3, pp.363-371, 1988.
DOI : 10.1042/bj1540405

C. Juel, Lactate-proton cotransport in skeletal muscle, Physiol Rev, vol.77, pp.321-358, 1997.

C. Juel, Lactate/proton co-transport in skeletal muscle: regulation and importance for pH homeostasis, Acta Physiologica Scandinavica, vol.156, issue.3, pp.369-374, 1996.
DOI : 10.1046/j.1365-201X.1996.206000.x

C. Juel, Muscle lactate transport studied in sarcolemmal giant vesicles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1065, issue.1, pp.15-20, 1991.
DOI : 10.1016/0005-2736(91)90004-R

C. Juel, Muscle pH regulation: role of training, Acta Physiologica Scandinavica, vol.444, issue.3, pp.359-366, 1998.
DOI : 10.1113/jphysiol.1992.sp019074

C. Juel, Regulation of cellular pH in skeletal muscle fiber types, studied with sarcolemmal giant vesicles obtained from rat muscles, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1265, issue.2-3, pp.127-132, 1995.
DOI : 10.1016/0167-4889(94)00209-W

C. Juel, Symmetry and pH dependency of the lactate/proton carrier in skeletal muscle studied with rat sarcolemmal giant vesicles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1283, issue.1, pp.106-110, 1996.
DOI : 10.1016/0005-2736(96)00084-3

C. Juel, Training-induced changes in membrane transport proteins of human skeletal muscle, European Journal of Applied Physiology, vol.535, issue.6, pp.627-635, 2006.
DOI : 10.1152/ajpcell.00598.2001

C. Juel and A. Halestrap, Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter, The Journal of Physiology, vol.67, issue.suppl. 1, pp.633-642, 1999.
DOI : 10.1006/exer.1998.0533

C. Juel, M. Holten, and D. F. , Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans, The Journal of Physiology, vol.39, issue.1, pp.297-304, 2004.
DOI : 10.1016/0026-0495(90)90133-W

C. Juel, C. Klarskov, J. Nielsen, P. Krustrup, M. Mohr et al., Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle, AJP: Endocrinology and Metabolism, vol.286, issue.2, pp.245-251, 2004.
DOI : 10.1152/ajpendo.00303.2003

C. Juel, S. Kristiansen, H. Pilegaard, J. Wojtaszewski, and E. Richter, Kinetics of lactate transport in sarcolemmal giant vesicles obtained from human skeletal muscle, J Appl Physiol, vol.76, pp.1031-1036, 1994.

C. Juel, C. Lundby, M. Sander, J. Calbet, and G. Hall, Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxia, The Journal of Physiology, vol.548, issue.2, pp.639-648, 2003.
DOI : 10.1113/jphysiol.2002.035899

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2342856/pdf

C. Juel and H. Pilegaard, Lactate/H + transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity, Pfl???gers Archiv European Journal of Physiology, vol.436, issue.4, pp.560-564, 1998.
DOI : 10.1007/s004240050672

P. Kirk, M. Wilson, C. Heddle, M. Brown, A. Barclay et al., CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression, Expression of Na + /HCO cotransporter proteins (NBCs) in rat and human skeletal muscle, pp.3896-3904, 2000.
DOI : 10.1074/jbc.273.26.15920

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC306613

M. Kristensen, J. Albertsen, M. Rentsch, and C. Juel, Lactate and force production in skeletal muscle, The Journal of Physiology, vol.261, issue.2, pp.521-526, 2004.
DOI : 10.1113/jphysiol.1997.sp022009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665519

P. Krustrup, M. Mohr, T. Amstrup, T. Rysgaard, J. Johansen et al., The Yo-Yo Intermittent Recovery Test: Physiological Response, Reliability, and Validity, Medicine & Science in Sports & Exercise, vol.35, issue.4, pp.697-705, 2003.
DOI : 10.1249/01.MSS.0000058441.94520.32

P. Krustrup, K. Soderlund, M. Mohr, and J. Bangsbo, The slow component of oxygen uptake during intense, sub-maximal exercise in man is associated with additional fibre recruitment, Pfl???gers Archiv European Journal of Physiology, vol.447, issue.6, pp.855-866, 2004.
DOI : 10.1007/s00424-003-1203-z

G. Lamb, D. Stephenson, J. Bangsbo, and C. Juel, Point:Counterpoint: Lactic acid accumulation is an advantage/disadvantage during muscle activity, Journal of Applied Physiology, vol.100, issue.4, pp.1410-1412, 2006.
DOI : 10.1152/japplphysiol.00023.2006

K. Lambert, G. Py, N. Eydoux, S. Matecki, M. Ramonatxo et al., Effect of food restriction on lactate sarcolemmal transport, Metabolism, vol.52, issue.3, pp.322-327, 2003.
DOI : 10.1053/meta.2003.50050

V. Lira, C. Benton, Z. Yan, and A. Bonen, PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity, Am J Physiol Endocrinol Metab, vol.299, pp.145-161, 2010.
DOI : 10.1152/ajpendo.00755.2009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928513

A. Lombardi, R. Fabris, F. Bassetto, R. Serra, A. Leturque et al., Hyperlactatemia reduces muscle glucose uptake and GLUT-4 mRNA while increasing (E1a)PDH gene expression in rat

D. Marcinek, M. Kushmerick, and K. Conley, Lactic acidosis in vivo: testing the link between lactate generation and H+ accumulation in ischemic mouse muscle, Journal of Applied Physiology, vol.108, issue.6, pp.1479-1486, 2010.
DOI : 10.1152/japplphysiol.01189.2009

M. Mason and R. Thomas, A microelectrode study of the mechanisms of L-lactate entry into and release from frog sartorius muscle., The Journal of Physiology, vol.400, issue.1, pp.459-479, 1988.
DOI : 10.1113/jphysiol.1988.sp017132

G. Mcclelland and G. Brooks, Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia, Journal of Applied Physiology, vol.92, issue.4, pp.1573-1584, 2002.
DOI : 10.1152/japplphysiol.01069.2001

G. Mcclelland, S. Khanna, G. Gonzalez, C. Butz, and G. Brooks, Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system?, Biochemical and Biophysical Research Communications, vol.304, issue.1, pp.130-135, 2003.
DOI : 10.1016/S0006-291X(03)00550-3

K. Mccullagh and A. Bonen, Reduced lactate transport in denervated rat skeletal muscle, Am J Physiol Regul Integr Comp Physiol, vol.268, pp.884-888, 1995.

K. Mccullagh, C. Juel, O. Brien, M. Bonen, and A. , Chronic muscle stimulation increases lactate transport in rat skeletal muscle, Molecular and Cellular Biochemistry, vol.156, issue.1, pp.51-57, 1996.
DOI : 10.1007/BF00239319

K. Mccullagh, R. Poole, A. Halestrap, O. Brien, M. Bonen et al., Role of the lactate transporter (MCT1) in skeletal muscles, Am J Physiol Endocrinol Metab, vol.271, pp.143-150, 1996.

K. Mccullagh, R. Poole, A. Halestrap, K. Tipton, O. Brien et al., Chronic electrical stimulation increases MCT1 and lactate uptake in red and white skeletal muscle, Am J Physiol Endocrinol Metab, vol.273, pp.239-246, 1997.

J. Mcdermott and A. Bonen, Lactate transport in rat sarcolemmal vesicles and intact skeletal muscle, and after muscle contraction, Acta Physiologica Scandinavica, vol.944, issue.Suppl. 338, pp.17-28, 1994.
DOI : 10.1042/bj1540405

J. Mclane and J. Holloszy, Glycogen synthesis from lactate in the three types of skeletal muscle, J Biol Chem, vol.254, pp.6548-6553, 1979.

N. Merezhinskaya and W. Fishbein, Monocarboxylate Transporters, Histol Histopathol, vol.32, issue.Pt.2, pp.243-264, 2009.
DOI : 10.1042/bj3290321

L. Messonnier, M. Kristensen, C. Juel, and C. Denis, Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans, Journal of Applied Physiology, vol.102, issue.5, pp.1936-1944, 2007.
DOI : 10.1152/japplphysiol.00691.2006

L. Metz, M. Vermaelen, K. Lambert, C. Broca, P. Sirvent et al., Endurance training increases lactate transport in male Zucker fa/fa rats, Biochemical and Biophysical Research Communications, vol.331, issue.4, pp.1338-1345, 2005.
DOI : 10.1016/j.bbrc.2005.04.054

C. Meyer, P. Saar, N. Soydan, M. Eckhard, R. Bretzel et al., A Potential Important Role of Skeletal Muscle in Human Counterregulation of Hypoglycemia, The Journal of Clinical Endocrinology & Metabolism, vol.90, issue.11, pp.6244-6250, 2005.
DOI : 10.1210/jc.2005-0225

B. Miller, J. Fattor, K. Jacobs, M. Horning, F. Navazio et al., Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion, The Journal of Physiology, vol.11, issue.3, pp.963-975, 2002.
DOI : 10.1177/0148607187011002109

M. Mohr, P. Krustrup, J. Nielsen, L. Nybo, M. Rasmussen et al., Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development, AJP: Regulatory, Integrative and Comparative Physiology, vol.292, issue.4, pp.1594-1602, 2007.
DOI : 10.1152/ajpregu.00251.2006

M. Morris and M. Felmlee, Overview of the Proton-coupled MCT (SLC16A) Family of Transporters: Characterization, Function and Role in the Transport of the Drug of Abuse ??-Hydroxybutyric Acid, The AAPS Journal, vol.10, issue.2, pp.311-321, 2008.
DOI : 10.1208/s12248-008-9035-6

I. Mujika, S. Padilla, D. Pyne, and T. Busso, Physiological Changes Associated with the Pre-Event Taper in Athletes, Sports Medicine, vol.52, issue.2, pp.891-927, 2004.
DOI : 10.1152/japplphysiol.01164.2001

J. Neary, T. Martin, D. Reid, R. Burnham, and H. Quinney, The effects of a reduced exercise duration taper programme on performance and muscle enzymes of endurance cyclists, European Journal of Applied Physiology and Occupational Physiology, vol.251, issue.Suppl 1, pp.30-36, 1992.
DOI : 10.1249/00005768-198812000-00014

O. Nielsen, F. De-paoli, and K. Overgaard, Protective effects of lactic acid on force production in rat skeletal muscle, The Journal of Physiology, vol.500, issue.1, pp.161-166, 2001.
DOI : 10.1113/jphysiol.1997.sp022009

S. Oyono-enguelle, H. Freund, J. Lonsdorfer, and A. Pape, Impaired Lactate Exchange and Removal Abilities after Supramaximal Exercise in Humans, Med Sport Sci, vol.34, pp.140-161, 1992.
DOI : 10.1159/000420987

T. Pedersen, T. Clausen, and O. Nielsen, Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and ??2-agonist, The Journal of Physiology, vol.551, issue.1, pp.277-286, 2003.
DOI : 10.1113/jphysiol.2003.041418

H. Pilegaard, J. Bangsbo, E. Richter, and C. Juel, Lactate transport studied in sarcolemmal giant vesicles from human muscle biopsies: relation to training status, J Appl Physiol, vol.77, pp.1858-1862, 1994.

H. Pilegaard, K. Domino, T. Noland, C. Juel, Y. Hellsten et al., Effect of high-intensity exercise training on lactate/H + transport capacity in human skeletal muscle, Am J Physiol Endocrinol Metab, vol.276, pp.255-261, 1999.

H. Pilegaard and C. Juel, Lactate transport studied in sarcolemmal giant vesicles from rat skeletal muscles: effect of denervation, Am J Physiol Endocrinol Metab, vol.269, pp.679-682, 1995.

H. Pilegaard, C. Juel, and F. Wibrand, Lactate transport studied in sarcolemmal giant vesicles from rats: effect of training, Am J Physiol Endocrinol Metab, vol.264, pp.156-160, 1993.

H. Pilegaard, G. Terzis, A. Halestrap, and C. Juel, Distribution of the lactate/H + transporter isoforms MCT1 and MCT4 in human skeletal muscle, Am J Physiol Endocrinol Metab, vol.276, pp.843-848, 1999.

R. Poole and A. Halestrap, Transport of lactate and other monocarboxylates across mammalian plasma membranes, Am J Physiol Cell Physiol, vol.264, pp.761-782, 1993.

R. Poole, A. Halestrap, S. Price, and A. Levi, The kinetics of transport of lactate and pyruvate into isolated cardiac myocytes from guinea pig. Kinetic evidence for the presence of a carrier distinct from that in erythrocytes and hepatocytes, Biochemical Journal, vol.264, issue.2, pp.409-418, 1989.
DOI : 10.1042/bj2640409

S. Powers and M. Jackson, Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production, Physiological Reviews, vol.88, issue.4, pp.1243-1276, 2008.
DOI : 10.1152/physrev.00031.2007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909187

N. Price, V. Jackson, and A. Halestrap, Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past, Biochemical Journal, vol.329, issue.2, pp.321-328, 1998.
DOI : 10.1042/bj3290321

G. Py, N. Eydoux, K. Lambert, R. Chapot, N. Koulmann et al., Role of hypoxia-induced anorexia and right ventricular hypertrophy on lactate transport and MCT expression in rat muscle, Metabolism, vol.54, issue.5, pp.634-644, 2005.
DOI : 10.1016/j.metabol.2004.12.007

URL : https://hal.archives-ouvertes.fr/inserm-00410567

G. Py, N. Eydoux, A. Perez-martin, E. Raynaud, J. Brun et al., Streptozotocin-induced diabetes decreases rat sarcolemmal lactate transport, Metabolism, vol.50, issue.4, pp.418-424, 2001.
DOI : 10.1053/meta.2001.21692

G. Py, K. Lambert, O. Milhavet, N. Eydoux, C. Prefaut et al., Effects of streptozotocin-induced diabetes on markers of skeletal muscle metabolism and monocarboxylate transporter 1 to monocarboxylate transporter 4 transporters, Metabolism, vol.51, issue.7, pp.807-813, 2002.
DOI : 10.1053/meta.2002.33343

G. Py, K. Lambert, A. Perez-martin, E. Raynaud, C. Prefaut et al., Impaired sarcolemmal vesicle lactate uptake and skeletal muscle MCT1 and MCT4 expression in obese Zucker rats, Am J Physiol Endocrinol Metab, vol.281, pp.1308-1315, 2001.

R. Robergs, F. Ghiasvand, and D. Parker, Biochemistry of exercise-induced metabolic acidosis, AJP: Regulatory, Integrative and Comparative Physiology, vol.287, issue.3, pp.502-516, 2004.
DOI : 10.1152/ajpregu.00114.2004

D. Roth and G. Brooks, Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles, Archives of Biochemistry and Biophysics, vol.279, issue.2, pp.386-394, 1990.
DOI : 10.1016/0003-9861(90)90506-T

D. Roth and G. Brooks, Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles, Archives of Biochemistry and Biophysics, vol.279, issue.2, pp.377-385, 1990.
DOI : 10.1016/0003-9861(90)90505-S

D. Roth and G. Brooks, Training does not affect zero-trans lactate transport across mixed rat skeletal muscle sarcolemmal vesicles, J Appl Physiol, vol.75, pp.1559-1565, 1993.
DOI : 10.1249/00005768-199205001-00845

S. Roth, R. Ferrell, D. Peters, E. Metter, B. Hurley et al., Influence of age, sex, and strength training on human muscle gene expression determined by microarray, Physiological Genomics, vol.10, issue.3, pp.181-190, 2002.
DOI : 10.1152/physiolgenomics.00028.2002

K. Sahlin, Metabolic Factors in Fatigue1, Sports Medicine, vol.13, issue.2, pp.99-107, 1992.
DOI : 10.2165/00007256-199213020-00005

K. Sakuma and A. Yamaguchi, The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle, Journal of Biomedicine and Biotechnology, vol.294, issue.3, p.721219, 2010.
DOI : 10.1073/pnas.0800962105

B. Scheuermann, J. Kowalchuk, D. Paterson, and D. Cunningham, Carbonic anhydrase inhibition delays plasma lactate appearance with no effect on ventilatory threshold, J Appl Physiol, vol.88, pp.713-721, 2000.
DOI : 10.1249/00005768-199505001-00134

S. Schmutz, C. Dapp, M. Wittwer, A. Durieux, M. Mueller et al., A hypoxia complement differentiates the muscle response to endurance exercise, Experimental Physiology, vol.100, issue.6, pp.723-735, 2010.
DOI : 10.1152/japplphysiol.00359.2005

C. Sen, Oxidants and antioxidants in exercise, J Appl Physiol, vol.79, pp.675-686, 1995.

B. Shepley, J. Macdougall, N. Cipriano, J. Sutton, M. Tarnopolsky et al., Physiological effects of tapering in highly trained athletes, J Appl Physiol, vol.72, pp.706-711, 1992.

E. Spangenburg, C. Ward, and J. Williams, Effects of lactate on force production by mouse EDL muscle: implications for the development of fatigue, Canadian Journal of Physiology and Pharmacology, vol.76, issue.6, pp.642-648, 1998.
DOI : 10.1139/y98-061

L. Spriet, C. Matsos, S. Peters, G. Heigenhauser, and N. Jones, Effects of acidosis on rat muscle metabolism and performance during heavy exercise, Am J Physiol Cell Physiol, vol.248, pp.337-347, 1985.

W. Stanley, E. Gertz, J. Wisneski, R. Neese, D. Morris et al., Lactate extraction during net lactate release in legs of humans during exercise, J Appl Physiol, vol.60, pp.1116-1120, 1986.

M. Suwa, H. Nakano, and S. Kumagai, Inhibition of calcineurin increases monocarboxylate transporters 1 and 4 protein and glycolytic enzyme activities in rat soleus muscle, Clinical and Experimental Pharmacology and Physiology, vol.84, issue.3, pp.218-223, 2005.
DOI : 10.1016/j.bbrc.2004.06.005

C. Thomas, D. Bishop, T. Moore-morris, and J. Mercier, Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis, AJP: Endocrinology and Metabolism, vol.293, issue.4, pp.916-922, 2007.
DOI : 10.1152/ajpendo.00164.2007

C. Thomas, S. Perrey, K. Lambert, G. Hugon, D. Mornet et al., Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans, Journal of Applied Physiology, vol.98, issue.3, pp.804-809, 2005.
DOI : 10.1152/japplphysiol.01057.2004

URL : https://hal.archives-ouvertes.fr/inserm-00148282

M. Tonouchi, H. Hatta, and A. Bonen, Muscle contraction increases lactate transport while reducing sarcolemmal MCT4, but not MCT1, American Journal of Physiology - Endocrinology And Metabolism, vol.282, issue.5, pp.1062-1069, 2002.
DOI : 10.1152/ajpendo.00358.2001

J. Trimmer, J. Schwarz, G. Casazza, M. Horning, N. Rodriguez et al., Measurement of gluconeogenesis in exercising men by mass isotopomer distribution analysis, Journal of Applied Physiology, vol.93, issue.1, pp.233-241, 2002.
DOI : 10.1152/japplphysiol.01050.2001

M. Ullah, A. Davies, and A. Halestrap, The Plasma Membrane Lactate Transporter MCT4, but Not MCT1, Is Up-regulated by Hypoxia through a HIF-1??-dependent Mechanism, Journal of Biological Chemistry, vol.324, issue.14, pp.9030-9037, 2006.
DOI : 10.1042/bj3240447

Y. Wang, M. Tonouchi, D. Miskovic, H. Hatta, and A. Bonen, increases lactate transport and the expression of MCT4, but not MCT1, in rat skeletal muscle, American Journal of Physiology - Endocrinology And Metabolism, vol.285, issue.3, pp.622-628, 2003.
DOI : 10.1152/ajpendo.00069.2003

P. Wetzel, A. Hasse, S. Papadopoulos, J. Voipio, K. Kaila et al., Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres, The Journal of Physiology, vol.21, issue.3, pp.743-756, 2001.
DOI : 10.1016/0034-5687(74)90064-4

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278498

M. Wilson, V. Jackson, C. Heddle, N. Price, H. Pilegaard et al., Lactic Acid Efflux from White Skeletal Muscle Is Catalyzed by the Monocarboxylate Transporter Isoform MCT3, Journal of Biological Chemistry, vol.271, issue.26, pp.15920-15926, 1998.
DOI : 10.1002/aja.1001710303