B. Alvarez, F. Loiselle, C. Supuran, G. Schwartz, and J. Casey, Direct extracellular interaction between carbonic anhydrase IV and the human, Exerc, vol.32, pp.790-799, 2000.
DOI : 10.1016/s0022-2828(02)90060-x

C. Butz, G. Mcclelland, and G. Brooks, MCT1 confirmed in rat striated muscle mitochondria, Journal of Applied Physiology, vol.97, issue.3, pp.1059-1066, 2004.
DOI : 10.1152/japplphysiol.00009.2004

F. Dela, M. Holten, and C. Juel, Effect of resistance training on Na,K pump and Na + /H + exchange protein densities in muscle from control and patients with type 2 diabetes, Pfl???gers Archiv European Journal of Physiology, vol.447, issue.6, pp.928-933, 2004.
DOI : 10.1007/s00424-003-1213-x

H. Dubouchaud, G. Butterfield, E. Wolfel, B. Bergman, and G. Brooks, Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle, Am J Physiol Endocrinol Metab, vol.278, pp.571-579, 2000.

J. Edge, D. Bishop, and C. Goodman, Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance, Journal of Applied Physiology, vol.101, issue.3, pp.918-925, 2006.
DOI : 10.1152/japplphysiol.01534.2005

C. Geers and G. Gros, Carbon dioxide transport and carbonic anhydrase in blood and muscle, Physiol Rev, vol.80, pp.681-715, 2000.

T. Hashimoto, R. Hussien, S. Oommen, K. Gohil, and G. Brooks, Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis, The FASEB Journal, vol.21, issue.10, pp.2602-2612, 2007.
DOI : 10.1096/fj.07-8174com

K. Henderson, H. Wagner, F. Favret, S. Britton, L. Koch et al., uptake in rats selectively bred for endurance running capacity, Journal of Applied Physiology, vol.93, issue.4, pp.1265-1274, 2002.
DOI : 10.1152/japplphysiol.00809.2001

C. Juel, exchanger isoform NHE1 in rat skeletal muscle and effect of training, Acta Physiologica Scandinavica, vol.77, issue.1, pp.59-63, 2000.
DOI : 10.1113/jphysiol.1986.sp016323

C. Juel, Muscle lactate transport studied in sarcolemmal giant vesicles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1065, issue.1, pp.15-20, 1991.
DOI : 10.1016/0005-2736(91)90004-R

C. Juel, Training-induced changes in membrane transport proteins of human skeletal muscle, European Journal of Applied Physiology, vol.535, issue.6, pp.627-635, 2006.
DOI : 10.1152/ajpcell.00598.2001

C. Juel and A. Halestrap, Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter, The Journal of Physiology, vol.67, issue.suppl. 1, pp.633-642, 1999.
DOI : 10.1006/exer.1998.0533

C. Juel, M. Holten, and D. F. , Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans, The Journal of Physiology, vol.39, issue.1, pp.297-304, 2004.
DOI : 10.1016/0026-0495(90)90133-W

C. Juel, C. Klarskov, J. Nielsen, P. Krustrup, M. Mohr et al., Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle, AJP: Endocrinology and Metabolism, vol.286, issue.2, pp.245-251, 2004.
DOI : 10.1152/ajpendo.00303.2003

C. Juel, C. Lundby, M. Sander, J. Calbet, and G. Hall, Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxia, The Journal of Physiology, vol.548, issue.2, pp.639-648, 2003.
DOI : 10.1113/jphysiol.2002.035899

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2342856

J. Kristensen, M. Kristensen, and C. Juel, Expression of Na+/HCO3- co-transporter proteins (NBCs) in rat and human skeletal muscle, Acta Physiologica Scandinavica, vol.282, issue.1, pp.69-76, 2004.
DOI : 10.1152/ajpcell.00589.2001

M. Lindinger, G. Heigenhauser, and L. Spriet, Effects of alkalosis on muscle ions at rest and with intense exercise, Canadian Journal of Physiology and Pharmacology, vol.68, issue.7, pp.820-829, 1990.
DOI : 10.1139/y90-125

G. Mainwood and P. Worsley-brown, The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle, The Journal of Physiology, vol.250, issue.1, pp.1-22, 1975.
DOI : 10.1113/jphysiol.1975.sp011040

A. Mannion, P. Jakeman, and P. Willan, Determination of human skeletal muscle buffer value by homogenate technique: methods of measurement, J Appl Physiol, vol.75, pp.1412-1418, 1993.

K. Mccullagh, R. Poole, A. Halestrap, O. Brien, M. Bonen et al., Role of the lactate transporter (MCT1) in skeletal muscles, Am J Physiol Endocrinol Metab, vol.271, pp.143-150, 1996.

M. Mohr, P. Krustrup, J. Nielsen, L. Nybo, M. Rasmussen et al., Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development, AJP: Regulatory, Integrative and Comparative Physiology, vol.292, issue.4, pp.1594-1602, 2007.
DOI : 10.1152/ajpregu.00251.2006

L. Opie and E. Newsholme, The activities of fructose 1,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle, Biochemical Journal, vol.103, issue.2, pp.391-399, 1967.
DOI : 10.1042/bj1030391

W. Parkhouse, D. Mckenzie, P. Hochachka, and W. Ovalle, Buffering capacity of deproteinized human vastus lateralis muscle, J Appl Physiol, vol.58, pp.14-17, 1985.

H. Pilegaard, K. Domino, T. Noland, C. Juel, Y. Hellsten et al., Effect of high-intensity exercise training on lactate/H + transport capacity in human skeletal muscle, Am J Physiol Endocrinol Metab, vol.276, pp.255-261, 1999.

H. Pilegaard, G. Terzis, A. Halestrap, and C. Juel, Distribution of the lactate/H + transporter isoforms MCT1 and MCT4 in human skeletal muscle

H. Rico, L. Aznar, E. Hernandez, C. Seco, A. Sanchez-atrio et al., Effects of Potassium Bicarbonate Supplementation on Axial and Peripheral Bone Mass in Rats on Strenuous Treadmill Training Exercise, Calcified Tissue International, vol.65, issue.3, pp.242-245, 1999.
DOI : 10.1007/s002239900691

P. Srere, [1] Citrate synthase, Methods Enzymol, vol.13, pp.3-5, 1969.
DOI : 10.1016/0076-6879(69)13005-0

D. Street, J. Nielsen, J. Bangsbo, and C. Juel, Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium, The Journal of Physiology, vol.537, issue.2, pp.481-489, 2005.
DOI : 10.1113/jphysiol.2001.012954

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2005.086801/pdf

C. Thomas, S. Perrey, K. Lambert, G. Hugon, D. Mornet et al., Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans, Journal of Applied Physiology, vol.98, issue.3, pp.804-809, 2005.
DOI : 10.1152/japplphysiol.01057.2004

URL : https://hal.archives-ouvertes.fr/hal-01587472

P. Wetzel, A. Hasse, S. Papadopoulos, J. Voipio, K. Kaila et al., Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres, The Journal of Physiology, vol.21, issue.3, pp.743-756, 2001.
DOI : 10.1016/0034-5687(74)90064-4

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1469-7793.2001.0743h.x/pdf

M. Wilson, V. Jackson, C. Heddle, N. Price, H. Pilegaard et al., Lactic Acid Efflux from White Skeletal Muscle Is Catalyzed by the Monocarboxylate Transporter Isoform MCT3, Journal of Biological Chemistry, vol.271, issue.26, pp.15920-15926, 1998.
DOI : 10.1002/aja.1001710303