RISKY BEHAVIOURS AMONG YOUNG ELITE-STUDENT-ATHLETES
Patrick Peretti-Watel, Valérie Guagliardo, Pierre Verger, Jacques Pruvost, Patrick Mignon, Yolande Obadia

To cite this version:

HAL Id: hal-01697050
https://hal-insep.archives-ouvertes.fr/hal-01697050
Submitted on 30 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
RISKY BEHAVIOURS AMONG YOUNG ELITE-STEMENT-ATHLETES
Results from a Pilot Survey in South-Eastern France

Patrick Peretti-Watel,
Regional Centre for Disease Control of South-Eastern France (ORS PACA), and INSERM Research Unit 379, ‘Social Sciences Applied to Medical Innovation’, Institut Paoli Calmettes.

Address: P. Peretti-Watel, ORS-PACA INSERM U379, 23 rue Stanislas Torrents, Marseille, France.

Valérie Guagliardo,
Regional Centre for Disease Control of South-Eastern France (ORS PACA), and INSERM Research Unit 379, ‘Social Sciences Applied to Medical Innovation’, Institut Paoli Calmettes.

Pierre Verger
Regional Centre for Disease Control of South-Eastern France (ORS PACA), and INSERM Research Unit 379, ‘Social Sciences Applied to Medical Innovation’, Institut Paoli Calmettes.

Jacques Pruvost
Regional and Departmental Authority on Youth and Sports of South-Eastern France (DRDJS PACA), Marseille, France.

Patrick Mignon
Laboratory of Sociology of Sport, National Institute for Sport and Physical Education (INSEP), Paris, France.

Yolande Obadia
Regional Centre for Disease Control of South-Eastern France (ORS PACA), and INSERM Research Unit 379, ‘Social Sciences Applied to Medical Innovation’, Institut Paoli Calmettes.

Abstract
Since the end of the 1980s, ‘youth risky behaviours’ have become a major issue for public health. The relationship between these behaviours and sporting activity is well-documented but still controversial. This article examines some sociological hypotheses related to this relationship, with data from a pilot survey conducted on a sample of 458 elite-student-athletes (ESAs) aged 16–24, gathered and trained in specialized public centres. We found a significant relationship between motives to do sport and ‘risky behaviours’: ESAs who considered sport as a convivial leisure were more prone to use cannabis, while ESAs who mingled sporting and extra-sporting achievements together were more likely to engage in risky behaviours on the road, possibly because they transposed values from the sporting field (speed, competition) into the ‘real world’. Moreover, sporting activity may provide opportunities for drug use with peers as well as incentives to use drugs in order to cope with the anxiety induced by high-level competition. Thus ‘recreational’ drugs may be used as ‘integrative’ drugs.

Key words • coping strategy • elite-student-athletes • motivations • risky behaviours

Since the end of the 1980s, youth risky behaviours (‘behaviours practised by young people that put their health at risk’, CDC, 2002) have become a major issue for public health, and the scientific literature on this issue has quickly expanded. Many studies have attempted to assess whether or not various factors are
linked to such behaviours, including family background, socioeconomic status, psychological disorders, and sporting activity.

Concerning the last topic, the literature remains controversial: according to several studies, young athletes have a healthier lifestyle than non-athletes (McArdle et al., 2000; Naylor et al., 2001; Pate et al., 2000), while other studies came to the opposite conclusion for drug use, risky driving or unsafe sex (Billet, 2001; Forman et al., 1995; Gonzalez et al., 1994; Sun et al., 2000). Among possible explanations, this inconsistency may be due to differences in definitions and measures of sporting activity and its context: institutionalized practice in a competitive setting should be distinguished from recreational physical exercise (Claeys, 1985; Lorenté, 2002; Thorlindsson, 1989).

One way to better assess the risky behaviour-sport relationship at adolescence is to focus on athletes with a homogeneous sporting background. We present here some results from a pilot survey focusing on elite-student-athletes (ESAs) carried out in South-Eastern France. This survey gave us the opportunity to address three hypotheses concerning the relationship between sporting activity and risky behaviours:

- Sporting activity and risky behaviours may be impelled by similar motives and values (to get thrilled, to express commitment to masculine values). Indeed, as pointed out by psychologists (Csikszentmihalyi, 1975; Zuckerman, 1979) and sociologists (Caillois, 1967; Lyng, 1990), both activities may reveal the same sensation-seeking, the same search for vertigo, exhilaration or ‘flow’. This hypothesis is especially relevant to the relationship between sliding or ‘X-treme’ sports and drug use in adolescence (Beck et al., 2000; Cherpitel et al., 1998; Pillard et al., 2001). Furthermore, in civilized societies, sport is one of the last strongholds (with some occupational spheres: army, police) for masculine values related to physical strength, aggressiveness and confrontation with opponents (Dunning, 1986; Sheard and Dunning, 1973). So athletes may be ‘positive deviants’, since they are socialized in a world that worships behaviours which are forbidden outside the sporting field (Coakley, 2001).

- Second, like any activity that allows youngsters to go out and escape temporarily from parental control, sporting practice may provide occasions to engage in risky behaviours with peers. This hypothesis refers to the opportunity structure of deviance, which is a classic subject in the sociology of deviance (Becker, 1963; Cloward and Ohlin, 1960). This topic has been extensively investigated for the relation between sport and juvenile delinquency, with contradictory results that highlighted the necessity for distinguishing organized and informal activities, and also for taking into account the level of competition (which could be linked to the degree of organization of sporting activity: coaches at higher level of play may exert more social control; Agnew, 1989; Schafer, 1969; Seagrave et al., 1985; Yiannikis, 1980).

- Lastly, drug use may be a means to alleviate the anxiety resulting from competition (Peretti-Watel et al., 2002a, 2002b). Indeed, competition frequently induces anxiety among young athletes (Bray et al., 2000; Passer, 1983; Smoll and Smith, 1990), and previous studies have already found that people use cigarettes, alcohol or cannabis to cope with stressors (Ballion, 2001; Holahan et al., 2001; Sorensen and Pechacek, 1987; Waldron, 1991).

Method

Data Source

The data were abstracted from the Survey on Elite Provençal Student-Athletes (SEPSA). The SEPSA survey is a pilot study, which is likely to be extended to the whole country in the years to come. In France, each year, the Ministry of Youth and Sports draws up three lists of the best young athletes and proposes that they enter specialized public centres administered at the regional level. The first list includes athletes who have already achieved significant performances in international competitions; the second list gathers
young athletes with promising but not yet significant performances; the third one aims to supply athletes enlisted from the first two lists with valuable sparring partners. Each centre musters athletes practising the same sport, and organizes their training programmes, their school timetable, as well as their medical follow-up.

The SEPSA survey targeted ESAs aged 16–24 and registered in one of these three lists, in the centres located in South-Eastern France (Provence, the Alps and the French Riviera), which is placed third among French regions for the number of such centres. Among these centres, five were not included in the survey because their ESAs were either aged over 24 or under 16. The remaining 40 centres gathered 616 ESAs aged 16–24 in 28 different sports. Between February and May 2002, ESAs answered a self-administered questionnaire within a training room, in the presence of a professional investigator who was responsible for presenting the survey to the pupils. In order to ensure confidentiality, anonymous questionnaires were directly collected in a ballot box.

Questionnaire

The questionnaire included 127 closed-ended questions dealing with demographic background, mental health, sporting activity, lifestyle and opinions towards sport. ESAs were also asked to report their sporting discipline, but we did not use it. Indeed, the sample size by discipline was sometimes very small, thus using this variable in the analysis would have threatened respondents’ anonymity.

Six so-called ‘risky behaviours’ were assessed by the questionnaire:

- Current smoking: subjects smoking cigarettes at the time of the study, at least from time to time (including both daily and less than daily smokers).
- Regular drinking: subjects drinking alcohol at least 10 times per month.
- Occasional use of cannabis: subjects smoking cannabis at least once during the last 12 months.
- Unsafe sexual intercourse: subjects having intercourse with a non-regular partner without using condom during the last 12 months.
- Drunk driving: subjects driving a vehicle while being drunk, at least once during the last 12 months.
- Non-use of seatbelt or helmet (for motorcycles): ‘rarely’, ‘often’, ‘every time’, versus ‘never’.

In order to test whether or not sporting practice and risky behaviours were impelled by the same motives, the questionnaire included 12 questions dealing with ESAs’ motivations to engage in sport (based on a four-point Likert scale). The potential influence of sporting peers on opportunities to behave in a risky way was measured by asking to respondents whether they had been out with athletes or with non-athletes during the last 30 days. Finally, the questionnaire included questions about psychological disorders which were measured with the GHQ-12 (General Health Questionnaire, 12-item version), a widely used instrument to detect psychological disorders, especially current depressive and anxiety symptoms. It has been validated in many countries, including France (Goldberg et al., 1997). In non-clinical populations, the GHQ-12 score is usually used as a continuous variable (Banks, 1983). This score ranges from 0 (no psychological disorder) to 36 (acute psychological disorders).

Statistical Analysis

We described our sample for male and female ESAs separately, using Pearson’s χ^2 to compare them. Then, a cluster analysis was performed to summarize in some synthetic profiles the variety of motivations to engage in sport. For the corresponding 12 questions, items measuring agreement were encoded from 1 (‘strongly disagree’) to 4 (‘strongly agree’). Non-responses were replaced by mean values, and the resulting variables were transformed to Z-scores prior to clustering. The cluster analysis was based on the agglomerative hierarchical procedure (each observation begins in a cluster by itself, then the two closest clusters are merged to form a new one, and this procedure is repeated until only one cluster is left). At every step, clusters were less homogeneous but more easily interpretable. We selected a three-cluster
partition, which was described with t-tests for motivation items, an ANOVA test for age and GHQ-12, and Pearson’s r^2 for proportions (for gender, competitive level and outings).

We used multivariate logistic models to test the relationship between risky behaviours and motivations to do sport (with the three-cluster partition), outings with athletes or non-athletes, competitive level (national or regional versus international or Olympic), psychological disorders (GHQ-12 score), while controlling for usual confounding factors (gender and age). Our models were built by selecting step by step the more significant factors using the stepwise method (entry threshold $p = 0.10$), with gender and age forced into all models. Odds ratios (ORs) were computed from the regression coefficients and their levels of statistical significance were computed from the Wald’s r^2. Given the small size of our sample, only one decimal is reported for ORs. By definition, ORs are equal to 1 for reference values.

Lastly, in the case of unsafe sexual intercourse, as previous studies showed that athletic participation and gender interact to influence adolescent sexual outcomes (Kokotailo et al., 1996; Miller et al., 1998, 2003; Sabo et al., 1999), two separate models were built: one for females, one for males.

Results

Description of the Sample

Among the 616 eligible ESAs, 147 were absent (most of them were on a sporting trip for a competition), 13 refused to participate or did not answer the demographic items and 458 (159 girls and 299 boys) completed the questionnaire correctly (response rate: 74.4%).

As shown in Table 1, boys were slightly older than girls, and girls reported more symptoms of psychological disorders. One ESA out of two went in for competitive sport at the national level, and one out of three at the international or Olympic level. Concerning ‘risky behaviours’, boys were more prone to drink alcohol regularly, to use cannabis occasionally and to engage in unsafe road behaviour (drunk driving or non-use of seatbelt or helmet).

Motivations to Engage in Sport

The three-cluster partition summarizing motivations to engage sport is described in Table 2. Cluster 1 ($n = 242$, 52.8% of the sample) corresponds to respondents who rated almost all items higher than other ESAs, except for motivations that refer to sport as leisure (‘for pleasure’, ‘for health’, ‘to meet people, to make friends’). The highest scores for items related to personal and social achievement (‘to become really someone’, ‘to feel strong’, ‘to earn money’) were observed in this cluster, ahead of items related to sporting success. This profile of motives can be labelled as an instrumental orientation toward sport. Males were overrepresented among those respondents.

Respondents in Cluster 2 ($n = 103$, 22.5% of the sample) were characterized by high scores for items related to the competitive spirit (‘performance’, ‘mounting the top of the rostrum’, ‘competition’), but they also highlighted the importance of pleasure.

These respondents were less prone to agree with motivations related to personal achievement (‘to develop one’s body’, ‘to feel strong’, ‘to become really someone’, ‘to earn money’). These ESAs were older and more prone to go out with other athletes or to go in for competition at the international or Olympic level. Finally, Cluster 3 ($n = 113$, 24.7%) is characterized by higher scores for only two items (‘pleasure’, ‘to meet people, to make friends’), and lower scores for items related to competitive spirit or personal and social achievement. Corresponding ESAs, who were more frequently females, who were younger and practised less frequently at the international or Olympic level, seemed to consider, above all, sport as a form of leisure.

Factors Associated with Risky Behaviours among ESAs

Once the effects of gender and age were controlled for, ESAs whose sporting practice was motivated by pleasure and sociability (sport as a form of leisure) were more prone to smoke cigarettes or to use cannabis occasionally, while those who considered sport as a means for personal and social achievement
(instrumental orientation toward sport) were more likely to engage in unsafe road behaviour (drunk driving or non-use of seatbelt or helmet, OR < 1 for Clusters 2 or 3 versus Cluster 1). Lastly, girls who endorsed the competitive spirit were more prone to engage in unsafe sex.

ESAs who went out recently with other athletes were more likely to be current smokers, regular drinkers (for boys only), or occasional users of cannabis. Those who went out with non-athletes were more prone to use cannabis occasionally, or to engage in unsafe sex (for boys only) or drunk driving.

Competition at the international or Olympic level was positively associated with current smoking and regular drinking (among boys only). Finally, psychological disorders were positively correlated with current smoking and occasional use of cannabis.

Lastly, as none of the three clusters is clearly oriented to thrill motivations, we directly tested the relationship between thrill motivations for sport and cannabis use in a separate model, by substituting the thrill motivation item for the three-cluster partition. We obtained no significant relationship between this item and cannabis use ($p = 0.370$).

Discussion

First, we have to acknowledge some limitations of our study. Data were extracted from a pilot survey carried out in only one French region, and must not be considered to represent a sample of the global French ESAs population (even if ESAs are recruited from the national level before being dispatched in regions according to the sport they practise). Moreover, because of the sample size, we did not separate systematically males and females in the analysis, nor take into account the heterogeneity of sporting disciplines.

Our first hypothesis was related to motives for practising sport and engaging in ‘risky behaviours’. A cluster analysis on motivations reported by ESAs enabled us to identify three profiles. ESAs who considered sport as a leisure by emphasizing the importance of pleasure and sociability in sport were more likely to smoke cigarettes or cannabis (these two uses being closely connected), and we did not find the expected relationship between the search for thrills in sport and cannabis use. This result may illustrate the so-called ‘normalization’ of adolescent recreational drug use: most of the time, contemporary cannabis users are not daredevils, they do not consider themselves as risk-takers. They rather regard their consumption as convivial and safe leisure (Parker et al., 1998; Peretti-Watel, 2003). We also found that ESAs who were more prone to endorse motivations related to personal and social achievement, as well as motivations related to sporting success, were more likely to engage in risky behaviours on the road. The boundaries between the sporting field and the outside world may have become blurred for these ESAs who mixed sporting and non-sporting achievement: their propensity to risk-taking on the road could mean that they have transposed values from the sporting field (speed, competition) into the ‘real world’. Lastly, among girls the competitive spirit was linked to unsafe sex, but this result should be interpreted cautiously because the corresponding subsample size is very small.

Second, we tried to address the topic of opportunities. Even if this hypothesis seems more relevant to the case of informal practice (Peretti-Watel et al., 2002a), our data illustrated the ‘opportunity effect’ for cannabis use: outings with athletes or non-athletes increased the risk of engaging in such use. But in the case of alcohol drinking among male ESAs, athletes who reported outings with athletes were more prone to drink regularly, while those who reported outings with non-athletes were not. This result points out the ambiguity of the ‘opportunity effect’. Indeed, people are not passively exposed to their environment: they choose whether or not they jump at the opportunity, and they may also bring about the opportunity (Osgood et al., 1996). This observation relates to the first hypothesis about sporting socialization and masculine values perpetuated in ‘male disciplines’: outings with other athletes may provide an ESA with opportunities to drink alcohol, and he/she may jump at this opportunity because he/she has been socialized among peer athletes who value this behaviour. Previous studies have already observed a relationship between alcohol drinking and the practice of a ‘male sport’, like rugby or strength and combat sports (Peretti-Watel et al., 2002a; Quarrie et al., 1996). On the contrary, in our sample unsafe sex (for males only) and drunk driving were only related to outings with non-athletes.
Third, competition frequently induces anxiety among young athletes, so drug use may be a means to alleviate this anxiety. The GHQ-12 score, assessing psychological disorders, and especially anxiety and depressive symptoms, was positively linked to current smoking and occasional use of cannabis, and ESAs who competed at the international or Olympic level were more prone to smoke cigarettes or (for males only) to drink alcohol regularly. Nevertheless, the GHQ-12 is probably a poor tool to assess anxiety among athletes: in the future, we should use sport-specific instruments. Moreover, the relationship between drug use and competition can also be interpreted with reference to the ‘opportunity effect’, since international competition means travelling abroad. Despite these empirical limitations, the relationship between anxiety, competition and drug use illustrates the ‘integrative’ use of so-called ‘recreational’ drugs: they can be used to increase efficiency or simply to ‘hold out’ and to manage stress (Ehrenberg, 1991).

Lastly, further research is needed to improve the theoretical conceptualization of the relationship between sporting practice and so-called ‘risky behaviours’. As both activities are frequently supposed to express common motives and values, we have to investigate what meaning the individual gives to his/her behaviours. Such a conceptualization should question the current definition of ‘youth risky behaviours’, because this definition merges deliberate risk-taking as well as behaviours that are not considered as dangerous by those who engage in them. This is well-illustrated by cannabis use: we did not find the expected relationship between thrill motivations for sport and cannabis use, probably because adolescents do not experience this use as a search for thrills.

Conclusion

The SEPSA survey allowed us to study risky behaviours among a specific and homogeneous population of high-level young athletes, registered in public centres that provided them with a high standard of sporting facilities, training programmes and medical follow-up. We found some support for the tested hypotheses, even if some results could be interpreted in various ways: sporting activity and risky behaviours may be both impelled by similar motives and values; sporting activity may provide opportunities to engage in risky behaviours; ‘recreational’ drugs may be used as ‘integrative’ drugs, to alleviate the anxiety sharpened by competition.

Acknowledgements This study was supported by the Regional Council of South-Eastern France (Provence, the Alps and the French Riviera) and the Regional and Departmental Authority on Youth and Sports of South-Eastern France (DRDJS PACA).

References

Tables

Table 1 Description of the SEPSA Subjects: Age, Psychological Disorders, Outings, Competitive Level and ‘Risky Behaviours’ According to Gender

<table>
<thead>
<tr>
<th></th>
<th>Girls (%)</th>
<th>Boys (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 159</td>
<td>n = 299</td>
<td>n = 458</td>
</tr>
<tr>
<td>Average age (in years) (SD)</td>
<td>18.0 (2.1)</td>
<td>18.5 (2.3)</td>
<td><.05 18.3</td>
</tr>
<tr>
<td>GHQ-12 average score (SD)</td>
<td>15.2 (6.9)</td>
<td>11.3 (5.3)</td>
<td><.001 12.2</td>
</tr>
<tr>
<td>Outings during the last 30 days**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with athletes (n=338)</td>
<td>73.6</td>
<td>73.9</td>
<td>.939 73.8</td>
</tr>
<tr>
<td>with non-athletes (n=322)</td>
<td>72.3</td>
<td>69.2</td>
<td>.490 70.3</td>
</tr>
<tr>
<td>Competitive level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>regional (n = 70)</td>
<td>10.7</td>
<td>17.7</td>
<td>.962 15.3</td>
</tr>
<tr>
<td>national (n = 236)</td>
<td>56.0</td>
<td>49.2</td>
<td>51.5</td>
</tr>
<tr>
<td>international, Olympic (n = 152)</td>
<td>33.3</td>
<td>33.1</td>
<td>33.2</td>
</tr>
<tr>
<td>‘Risky behaviours’:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current smoking (n = 105)</td>
<td>24.5</td>
<td>22.1</td>
<td>.552 22.9</td>
</tr>
<tr>
<td>regular drinking (n = 27)</td>
<td>0.6</td>
<td>8.7</td>
<td><.001 5.9</td>
</tr>
<tr>
<td>occasional use of cannabis (n = 111)</td>
<td>18.2</td>
<td>28.2</td>
<td><.05 24.7</td>
</tr>
<tr>
<td>unsafe sexual intercourse (n = 47)</td>
<td>8.2</td>
<td>11.4</td>
<td>.283 10.3</td>
</tr>
<tr>
<td>drunk driving (n = 93)</td>
<td>12.6</td>
<td>24.7</td>
<td><.01 20.3</td>
</tr>
<tr>
<td>non-use of seatbelt or helmet (n = 141)</td>
<td>21.4</td>
<td>35.8</td>
<td><.001 30.8</td>
</tr>
</tbody>
</table>

* p-value for testing the independence hypothesis between males and females for each row variable.

** the two items were not exclusive.
Table 2 Cluster Analysis on Motivations to Do Sport among ESAs, Description by Gender, Age and Sporting Characteristics

<table>
<thead>
<tr>
<th>Motives to do sport (mean*)</th>
<th>Cluster 1 n = 242</th>
<th>Cluster 2 n = 103</th>
<th>Cluster 3 n = 113</th>
<th>Total n = 458</th>
</tr>
</thead>
<tbody>
<tr>
<td>For pleasure</td>
<td>3.6</td>
<td>4.0</td>
<td>4.0</td>
<td>3.8</td>
</tr>
<tr>
<td>For performance</td>
<td>3.8</td>
<td>3.9</td>
<td>3.0</td>
<td>3.6</td>
</tr>
<tr>
<td>For health</td>
<td>3.2</td>
<td>2.7</td>
<td>3.2</td>
<td>3.1</td>
</tr>
<tr>
<td>To feel strong</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>To meet people, to make friends</td>
<td>2.8</td>
<td>2.5</td>
<td>3.2</td>
<td>2.8</td>
</tr>
<tr>
<td>For competition</td>
<td>3.8</td>
<td>3.8</td>
<td>3.0</td>
<td>3.6</td>
</tr>
<tr>
<td>To become really someone</td>
<td>3.2</td>
<td>2.1</td>
<td>1.9</td>
<td>2.6</td>
</tr>
<tr>
<td>To be thrilled</td>
<td>3.6</td>
<td>3.4</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>To develop one’s body</td>
<td>3.3</td>
<td>2.6</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>To earn money</td>
<td>2.3</td>
<td>1.5</td>
<td>1.5</td>
<td>1.9</td>
</tr>
<tr>
<td>To mount the top of the rostrum</td>
<td>3.7</td>
<td>3.6</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Because one’s parent(s) practised sport</td>
<td>1.9</td>
<td>1.3</td>
<td>1.6</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Description of clusters:

<table>
<thead>
<tr>
<th></th>
<th>Female %</th>
<th>Male %</th>
<th>Average age (in years) (SD)</th>
<th>GHQ-12 average score (SD)</th>
<th>Outings during the last 30 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>with athletes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>with non-athletes</td>
</tr>
<tr>
<td>Competitive level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>regional, national</td>
<td>66.2%</td>
<td>58.3%</td>
<td>74.8%</td>
<td>80.6%</td>
<td>65.5%</td>
</tr>
<tr>
<td>international, Olympic</td>
<td>33.1%</td>
<td>41.7%</td>
<td>74.3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p** *p*-value for testing the Independence hypothesis between the four-cluster partition and each row variable.

* Items measuring agreement were encoded from 1 ('strongly disagree') to 4 ('strongly agree'). For each item, t-tests were computed to compare each cluster to the rest of the sample. For each cluster, the most significant items (p<.001) were in bold type (for items with a higher value within the cluster) or in italics (for items with a lower value within the cluster).
Table 3 Logistic Regressions Predicting Risky Behaviours among ESAs, Based on Gender, Age, Psychological Disorders and Sporting Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Odds ratios (ORs)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Current smoking</td>
<td>Regular</td>
<td>Occasional</td>
<td>Drunk</td>
<td>Non-use</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>drinking³</td>
<td>use of cannabis</td>
<td>driving</td>
<td>of seatbelt</td>
</tr>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (ref.)</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Male</td>
<td>1.2 ns</td>
<td>2.8**</td>
<td>1.9*</td>
<td>2.5**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average age (in years)</td>
<td>1.0 ns</td>
<td>1.5***</td>
<td>1.0 ns</td>
<td>1.3***</td>
<td>0.9*</td>
<td></td>
</tr>
<tr>
<td>Clusters related to motivations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster 1 (instrumental orientation) (ref.)</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Cluster 2 (competitive spirit)</td>
<td>1.2 ns</td>
<td>1.2 ns</td>
<td>0.8 ns</td>
<td>0.6+</td>
<td>3.5+</td>
<td></td>
</tr>
<tr>
<td>Cluster 3 (leisure)</td>
<td>1.8*</td>
<td>2.1**</td>
<td>0.6+</td>
<td>0.7+</td>
<td>1.0 ns</td>
<td></td>
</tr>
<tr>
<td>Outings during the last 30 days with athletes: no (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>with non-athletes: no (ref.) yea</td>
<td>2.1**</td>
<td>1.9+</td>
<td>1.8*</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competitive level regional, national (ref.)</td>
<td>-1</td>
<td>-1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>international, Olympic</td>
<td>1.5+</td>
<td>2.2+</td>
<td>1.1**</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GHQ-12 average score</td>
<td>1.1**</td>
<td>---</td>
<td>1.1**</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

* Given that only 1 female ESA declared a regular use of alcohol, the model has been estimated for males only.

³ For unsafe sexual intercourse, females and males were studied separately, so the gender variable was constant in both corresponding logistic models.

--- Variable not selected by the stepwise method.

ns: non-significant; + p < .10; * p < .05; ** p < .01; *** p < .001.