Energetically Optimal Cadence vs. Freely-Chosen Cadence During Cycling: Effect of Exercise Duration

J. Brisswalter, C. Hauswirth, D. Smith, F. Vercruyssen, J. M. Vallier

1 Université de Toulon-Var, France
2 Laboratoire de Physiologie et Biomechanique, INSEP, Paris, France
3 Queensland Academy of Sport Triathlon, Brisbane, Australia
4 LAMM, Université de Poitiers, France
5 Service Medical, INSEP, Paris, France

The purpose of this study was to examine the relationship between cadence and oxygen consumption with exercise duration. Ten triathletes who trained regularly were examined. The first test was always a maximal test to determine maximal oxygen uptake (VO2max). The other sessions were composed of six submaximal tests representing 80% of the maximal power reached with VO2max (Pmax). During these tests submaximal rides with a duration of 30 min were performed. Each test represented, in a randomised order, one of the following pedal rates: 50, 65, 80, 95, 110 rpm and a freely-chosen rate. VO2, respiratory parameters, and heart rate were monitored continuously. Two periods, between the 3rd and the 6th minute and between the 25th and the 28th minute, were analysed. Results showed that the period. Furthermore, a significant effect of period was found on energetically optimal cadence (70 ± 4.5 vs. 86 ± 6.2 rpm, P < 0.05). Only during the second period was no significant difference found between freely-chosen cadence (83 ± 6.9 rpm) and energetically optimal cadence (P > 0.05). In conclusion, our results suggest that during prolonged exercise triathletes choose a cadence that is close to the energetically optimal cadence. A change of muscle fibre recruitment pattern with exercise duration and cadence would explain the shift in energetically optimal rate towards a higher pedal rate observed at the end of exercise.

Key words: Cadence, locomotion, oxygen uptake, fatigue.

Introduction

In long distance events (e.g., triathlon, marathon, race walking...) the maximal speed that athletes can sustain depends on the capacity of the subject to support the highest fraction, of VO2max and to spend the lowest amount of metabolic energy during the whole race [14]. In this case the energy cost of locomotion, defined as the amount of energy spent per unit distance, contributes significantly to long duration performance [4,7,13,32,37]. It is well-known that the energy cost of locomotion also reflects the biomechanical demand associated with changes in movement pattern [17,41]. Therefore in order to minimize the energy cost of locomotion, the choice of a particular cadence in cycling or running is classically evoked by coaches and researchers. For running or walking the relationship between movement frequencies and energy cost has been widely studied, often suggesting that the performer spontaneously adopts the pattern of locomotion leading to the lowest energy cost [6,23,24]. This does not appear to be the case for cycling. On the one hand the energetically optimal cadence ranges from 40 rpm to 80 rpm in trained or untrained cyclists [10,11,16,17], but on the other hand observations of cyclists often reveal that the freely chosen cadence is significantly higher than the most economical cadence (e.g., 17). The following functional assumptions have been made to explain this apparent conflict: changes in pedalling forces [34], neuro-muscular activation [30], or variation in ventilatory parameters [20]. However, results remain inconsistent, thus highlighting the difficulty in identifying factors that affect the relationship between energy cost and cadence [15,28,29]. In fact optimisation principles governing locomotion for cycling are probably as numerous as for other forms of locomotion, and thus the adoption of a specific locomotor pattern could be seen as a function of a) the task constraints and b) the constraints of the performer [25,31].

The main constraint occurring during long distance events is the exercise duration. Previous studies conducted on marathon runners [7], racewalkers [4], and triathletes [18,21,22,26] have observed a significant increase in energy cost of locomotion with exercise duration leading to the adoption of a specific pattern of locomotion during fatigue [4,22]. A number of mechanisms have been hypothesized to account for this increase in energy cost. During moderate to high intensity exercise the hypothesis that VO2 rise during prolonged exercise is related to the recruitment of type II muscle fibres is often sug-
Vo2max during constant intensity prolonged cycling. We examined the effect of pedal rate on energetically optimal and freely-chosen cadence was affected by prolonged endurance exercise. A second objective was to examine the effect of pedal rate on VO2 rise (i.e. energy cost increase) during constant intensity prolonged cycling.

Materials and Methods

Subjects

The subjects were ten triathletes in regular training. The physical characteristics of the subjects are given in Table 1. Before participating in this study, subjects were fully informed about the protocol, and informed consent was obtained prior to all testing.

Experimental design

Each subject completed 7 testing sessions during a 3 week period without any other training program. Each session was separated by a 48 h rest period. An electromagnetically braked ergometer, equipped with the triathlete’s own pedals and toe-clips and adjusted to the dimensions of their own bicycle, was used during all testing. The first session, performed at freely-chosen cadence, was used to accustom subjects to the laboratory and to determine VO2max (ml x min⁻¹ x kg⁻¹). After 6 min at 100 W the power output was increased by 25 W each minute until exhaustion. VO2 max was attained with a plateau in VO2 , an expiratory ratio of 1.15 or greater and a post blood lactate level above 8 mmol x L⁻¹. The other sessions were composed of a 6 min control ride followed by a 30 min submaximal test, at 80% of the maximal power reached with VO2 max (Pmax). For each test, after the control ride caused out at the preferred cadence, one of the following pedal rates 50, 65, 80, 95, 110 rpm or a freely-chosen rate was presented in a random order. Cadence, VO2, respiratory parameters (VE, RR), and heart rate (HR) were monitored continuously. Lactate was measured by enzymatic method (Yellow Springs Instruments Model 241) from a blood sample taken at rest and immediately at the end of the exercise. Two periods, between the 3rd – 6th and the 25th – 28th min, were analysed.

Statistical analysis

All data are expressed as mean ± SD. Short term variability between trial tests was analysed, first using repeated measures ANOVA on VO2 parameters, heart rate, and cadence recorded during the control rides. Coefficients of variation (SD/mean x 100) were then calculated for each subject. Based on previous studies, the relation between cadence and VO2 max was fitted using a polynomial regression with a quadratic model. The minimum point of the curve represented the energetically optimal cadence. A paired t-test was used to test differences in freely-chosen cadence between the two periods and differences between the energetically optimal and freely-chosen cadence. For all the statistical analyses the level of significance was set at P = 0.05.

Results

Maximal test

The maximal values obtained during the first session are presented in Table 1. The RER values and peak post-exercise blood lactate levels (LAmax) indicate the achievement of VO2 criteria and permitted using a Pmax value.

Submaximal test

No significant difference in VO2 was found. The mean coefficient of variation for VO2 was 2.8±0.4% (P > 0.05). Furthermore, the coefficient of variation of freely-chosen cadence was small for all subjects (mean = 1.8; range : 0.05) indicating that the preferred cadence of these triathletes was stable at 80% Pmax.

Data on cardio-respiratory responses at different pedal rates are presented in Table 2. Analysis of variance showed that VO2 and heart rate were different among pedal rates whatever the period. When VO2 was plotted against pedal rate using a quadratic model, mean values of regression coefficients for VO2 during the first and the second period were r = 0.90 (range 0.80 – 0.95) and r = 0.98 (range 0.96 – 0.99) respectively (Fig. 1). A significant effect of period was found for VO2 and for energetically optimal cadence. The lowest point of the graph was found for the first and the second period at 70 ± 4.5 and 86 ± 6.2 rpm, respectively (P < 0.05). A significant increase in oxygen uptake was observed with exercise duration for all pedal rates except for 95 rpm (P > 0.05). The most important rise in VO2 (ΔVO2 = VO2-period 2 – VO2 period 1) was found at 110 rpm (ΔVO2 = 4.9 ± 0.33 ml x kg⁻¹ x min⁻¹) while at 95 rpm ΔVO2 was equal to 1.9 ± 0.42 ml x kg⁻¹ x min⁻¹ (Fig. 2). Furthermore, for the second period blood lactate levels and VE values were significantly higher at 110 rpm than at the other pedal rates (P < 0.05, Fig. 3).

Optimal Pedal Rate and Exercise Duration

Table 1 Characteristics of the subjects

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>mass (kg)</th>
<th>height (cm)</th>
<th>VO2max (ml x kg⁻¹ x min⁻¹)</th>
<th>HRmax (bpm)</th>
<th>Pmax (watts)</th>
<th>LAmax (mmol x L⁻¹)</th>
<th>RERmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 ± 2</td>
<td>67.5 ± 3</td>
<td>178 ± 3.3</td>
<td>66.4 ± 3.4</td>
<td>187.3 ± 6</td>
<td>376.5 ± 20</td>
<td>15.8 ± 2.3</td>
<td>1.21 ± 0.03</td>
</tr>
</tbody>
</table>

Vo2max, [18,35]. Moreover, during cycling a preferential recruitment of type II fibres seems to occur at low (< 50 rpm) and at high pedal rates (> 100 rpm) [36]. These observations raise two questions, one concerning the effect of fatigue on the choice of a particular cycling cadence and the other concerning the consequences of this choice on the energy cost increase with exercise duration. The principal purpose of this study was therefore to investigate whether the relationship between energetically optimal and freely-chosen cadence was affected by prolonged endurance exercise. A second objective was to examine the effect of pedal rate on VO2 rise (i.e. energy cost increase) during constant intensity prolonged cycling.
Table 2 Mean oxygen uptake (VO₂), ventilation (VE), heart rate (HR), and lactate concentration (LA) associated with the 5 controlled and the freely chosen (FC) cycling cadences

<table>
<thead>
<tr>
<th>Cadences (rev × min⁻¹)</th>
<th>50</th>
<th>60</th>
<th>80</th>
<th>95</th>
<th>110</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO₂ (ml x kg⁻¹ x min⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 1</td>
<td>53.1±3</td>
<td>50.2±4.5</td>
<td>49.8±4.5</td>
<td>52.1±3.7</td>
<td>52.8±4.2</td>
<td>50.4±4.5</td>
</tr>
<tr>
<td>Period 2</td>
<td>56.8±4.5a</td>
<td>55.4±4.7a</td>
<td>53.8±4.4a</td>
<td>54.1±5.1</td>
<td>57.6±4.2ab</td>
<td>53.9±4.1a</td>
</tr>
<tr>
<td>VE (l x min⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 1</td>
<td>92.4±10</td>
<td>92.2±9</td>
<td>89.1±8</td>
<td>89.8±11</td>
<td>102±13b</td>
<td>86.2±9</td>
</tr>
<tr>
<td>Period 2</td>
<td>111.2±9a</td>
<td>106.8±13a</td>
<td>104.4±11a</td>
<td>106.4±11a</td>
<td>128.9±16ab</td>
<td>107.6±13a</td>
</tr>
<tr>
<td>HR (bpm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 1</td>
<td>162±15</td>
<td>156±11b</td>
<td>157±16</td>
<td>160±14</td>
<td>167±16b</td>
<td>158±11</td>
</tr>
<tr>
<td>Period 2</td>
<td>172±11b</td>
<td>170±13a</td>
<td>166±13b</td>
<td>168±12a</td>
<td>175±14ab</td>
<td>168±13</td>
</tr>
<tr>
<td>LA (mmol x L⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 1</td>
<td>3.5±0.8</td>
<td>3.4±1.2</td>
<td>3.7±0.6</td>
<td>4.1±1.1</td>
<td>5.8±2.3b</td>
<td>3.6±0.9</td>
</tr>
</tbody>
</table>

* represents significant difference between the two periods

b represents significant differences with the previous controlled cadence (from Newman-Keuls post hoc test, p < 0.05)

![Fig. 1](image1.png)
Fig. 1 Group mean responses for steady VO₂ as a function of pedal rate before and after a 30 min cycling exercise.
→ EOC1: mean energetically optimal cadence during the first period,
→ EOC2: mean energetically optimal cadence during the second period,
→ FC1: mean freely-chosen cadence during the first period,
→ FC2: mean freely-chosen cadence during the second period.

![Fig. 2](image2.png)
Fig. 2 Group mean responses for ΔVO₂ (VO₂ period 2 - VO₂ period 1) as a function of pedal rate.
* significant difference between the two periods (p < 0.05, FC represents the freely-chosen cadence (respective values for the first and the second period: 80±7.1 vs. 83±6.9 rpm).

![Fig. 3](image3.png)
Fig. 3 Group mean responses for steady state ventilation (VE) and post exercise lactate concentration (LA) as a function of pedal rate during the second period of cycling exercise.
→ EOC2: energetically optimal cadence during the second period
→ FC2: the freely-chosen cadence during the second period.

No significant difference in freely-chosen cadence was found between the first and the second period (80±7.1 vs. 83±6.9 rpm, respectively). Moreover, only during the second period did the freely-chosen cadence not differ significantly from the energetically optimal cadence (P > 0.05).

Discussion
The results clearly show the existence of an energetically optimal pedalling rate for a constant power output close to competition pace in trained triathletes independent of the duration of exercise. Nevertheless, the most significant finding of this investigation was the statistically significant shift of the energetically optimal cadence over exercise duration towards a higher pedal rate which is closer to the athletes freely-chosen cadence.

However, the comparison with previous findings must take into account the possible effect of several factors. On the one
hand, the validity of the measure of energy cost of the cycling task from VO₂ values and the use of heart rate as an indicator of intensity level depends on the assumption that exercise was strictly aerobic [14]. In our study carried out on triathletes, during the second period the 110 rpm pedal rate appears to be a partial anaerobic exercise. Mean blood lactate concentration and respiratory exchanges ratio values were 5.8 mmol.L⁻¹ and 1.15 respectively, and for this pedal rate the above assumption appears to be violated (Table 2). On the other hand, comparison of cadence effects depends on the short term reproducibility of physiological variables between sessions. No statistical variability in physiological parameters or freely-chosen cadence was found in this study (P > 0.05). This result concurs with previous studies and indicates the reproducibility of energy cost measurement in trained subjects [3,5].

To the best of our knowledge the effect of exercise of a duration longer than 6 minutes on the cycling economy cadence relation has not been well studied. Furthermore, although a lot of research has been conducted with trained cyclists, similar studies with triathletes are not available [32]. For short-term exercise the physiologically optimal cadences observed in our first period were within the range classically reported in the experimental literature for this power output in trained cyclists (e.g. [17]). For a longer period of work, since Coast et al. [11] found no difference in optimal pedal rate during a 20 min ride in five cyclists, the present results suggest that after the 20th minute a shift of this optimal rate could occur in a homogeneous group of triathletes. The differentiated effect of exercise duration on optimal cadence between cyclists and triathletes could be partly related to an individual’s cycling experience also affecting the choice of a preferred cadence. In general studies have indicated that experienced cyclists use pedalling frequencies higher than 90 rpm whereas untrained cyclists prefer frequencies around 60 rpm. Cycling experience as well as training or race specificity are thought to affect this adaptation (e.g. [10,15,17]). In this study the preferred pedalling rate of our triathletes at 80 rpm suggests that this choice could be influenced by the specificity of training mode in triathlon [38].

Both volume and specificity of training in cycling (triathletes vs. cyclists) appears to be a discriminant factor of a freely-chosen cadence and having an effect on the energetically optimal cadence [28]. Marsh and Martin [29] reported a training volume in cyclists of category II riding 402 km x wk⁻¹ (250 miles x wk⁻¹), whereas Hausswirth et al. [22] reported a training volume of 155 km x wk⁻¹ (96 miles x wk⁻¹) for a triathlete population specialised in Olympic distance. Moreover, in contrast to a cycle race, during the cycling section of a triathlon race the triathletes would generally try to minimise their energy demand in anticipation of the subsequent running section. This finding suggests that in trained triathletes the most economical pedalling rate could be coincident with the pedalling rate most preferred in prolonged (> 20 min) exercise of moderate-high intensity. However, further comparative studies between cyclists and triathletes are needed to test this hypothesis.

The relationship between energetically optimal and freely-chosen cadences remain unclear, and several studies have suggested that minimisation of aerobic demand is not a key determinant of preferred cadence selection [28,29,34,40]. Recent studies have reported that the preferred pedalling rate of experienced cyclists was coincident with a minimisation of neuromuscular fatigue and not with a minimisation of aerobic demand [30,39,40]. At the beginning of exercise our data provide support for this hypothesis. During the first period the preferred pedal rate (80 + 7.1 rpm) was significantly higher than the energetically optimal cadence (70 + 4.5 rpm, P < 0.05). However, during the test no significant effect of fatigue was observed on preferred pedal rate, and a shift of the energetically optimal cadence towards the preferred pedal rate was reported. Furthermore our study found a significant effect of cadence on VO₂ rise during exercise. A possible explanation for these effects could be related to a change of working muscle activity pattern with exercise duration. Several studies have also suggested the important link between a change in motor unit recruitment and the additional increase in VO₂ during prolonged moderate to high intensity exercise [2,35]. On the one hand, prolonged exercise is commonly associated with changes in EMG activity pattern and/or changes in fibre recruitment. With exercise duration the use of type I fibres is followed by recruitment of type II fibres [2,9,19,20,35]. However, type II fibre has a lower muscle efficiency (i.e. higher energy phosphate produced per oxygen molecule consumed) than type I fibre [10,42]. Therefore the supplementation of type I by type II fibres during prolonged exercise would be related to a decrease in thermodynamical muscle efficiency leading to an increase in energy cost [42].

On the other hand, during prolonged exercise the effect of type II fibre recruitment on VO₂ increase (ΔVO₂) could be enhanced by manipulation of pedal rate. Within this framework Ahlquist et al. [1] demonstrated during a 30 min ride at 85% of maximal aerobic capacity that a 50 rpm cycling rate but not a 100 rpm cadence is associated with an increase in the recruitment and glycogen depletion of type II fibres. For cycling exercise at a constant force it is suggested that a preferential recruitment of the type II fibres occurs at low pedal frequencies (< 50 rpm) and when concentration velocity is high (> 100 rpm) [36,39]. Furthermore Takaishi et al. [40] indicated that the preferred pedalling rate of experienced cyclists (75-90 rpm) was related to a decrease in muscle stress and a preferential recruitment of type I fibres. Our results support indirectly the hypothesis of muscle fibre recruitment on ΔVO₂. In our study the lowest pre to post trial difference in ΔVO₂ was observed at 95 rpm while the highest values of ΔVO₂ were observed at 65 and 110 rpm (Fig.2). This differential effect of pedal rate on ΔVO₂ may explain therefore the shift in energetically optimal cadence towards higher pedal rates at the end of the test.

In conclusion, during a 30 min ride performed at a habitual competition pace triathletes choose a cadence that is close to the energetically optimal cadence. Our results suggest that the change of working muscle activity pattern with exercise duration and pedal rate could be related firstly to the increase in VO₂ with time and secondly to the shift in energetically optimal rate towards a higher cadence at the end of exercise.

References

10 Coast JR, Welch HG. Linear increase in optimal pedal rate with increased power output in cycle ergometry. Eur J Appl Physiol 1983; 53: 339–342
34 Patterson RF, Moreno M. Bicycle pedalling forces as a function of pedalling rate and power output. Med Sci Sports Exerc 1990; 22: 512–516
35 Poule DC, Richardson RS. Determinants of oxygen uptake: implications for exercise testing. Sports Med 1997; 24: 306–320

Corresponding Author:
Pr J. Brisswalter
Université Ergonomie Sportive et Performance
Université de Toulon-Var
Avenue de l’Université
BP 132
F-83957 La Garde cedex
France

Phone: +33 (494) 14 26 13
Fax: +33 (494) 14 22 78
E-mail: brisswalter@univ-tln.fr