C. Hausswirth, D. Lehénaff, P. Dréano, and K. Savonen, Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon, Med Sci Sports Exerc, vol.31, pp.599-604, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01765345

I. Hòlmer, Oxygen uptake during swimming in man, J Appl Physiol, vol.33, pp.502-509, 1972.

I. Holmer, Energy cost of arm stroke, leg kick, and the whole stroke in competitive swimming, Eur J Appl Physiol, vol.33, pp.105-118, 1974.

E. T. Howley, D. R. Basset, and H. G. Welch, Criteria for maximal oxygen uptake: review and commentary, Med Sci Sports Exerc, vol.27, pp.1292-1301, 1995.

O. Hue, L. Gallais, D. Chollet, D. Boussana, A. Préfaut et al., The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes, Eur J Appl Physiol, vol.77, pp.98-105, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00720703

S. M. Jones and L. Passfield, The dynamic calibration of bicycle power measuring cranks, Haake Sj, pp.265-274, 1998.

J. Karlsson, F. Bonde-petersen, J. Henriksson, and H. G. Knuttgen, Effects of previous exercise with arms or legs on metabolism and performance in exhaustive exercise, J Appl Physiol, vol.38, pp.763-767, 1975.

R. B. Kreider, T. Boone, W. R. Thompson, S. Burkes, and C. W. Cortes, Cardiovascular and thermal responses of triathlon performance, Med Sci Sports Exerc, vol.20, pp.385-390, 1988.

R. B. Kreider, D. E. Cundiff, J. B. Hammett, C. W. Cortes, and K. W. Williams, Effects of cycling on running performance in triathletes, Annals Sports Med, vol.3, pp.220-225, 1988.

P. B. Laursen, E. C. Rhodes, and R. H. Langill, The effects of 3000-m swimming on subsequent 3-h cycling performance: implications for ultraendurance triathletes, Eur J Appl Physiol, vol.83, pp.28-33, 2000.

M. J. Mador and F. A. Acevedo, Effect of respiratory muscle fatigue on subsequent exercise performance, J Appl Physiol, vol.70, pp.2059-2065, 1991.
DOI : 10.1152/jappl.1991.70.5.2059

I. Margaritis, Facteurs limitants de la performance en triathlon, Can J Appl Physiol, vol.21, pp.1-15, 1996.
DOI : 10.1139/h96-001

J. E. Mclaughlin, G. A. King, E. T. Howley, D. R. Basset, and B. E. Ainsworth, Validation of the Cosmed K4 b2 portable metabolic system, Int J Sports Med, vol.22, pp.280-284, 2001.

J. M. Falola, J. Brisswalter, and N. Delpech, Effet du port d'une charge sur le tronc sur la détermination d'une vitesse de marche optimale, Sciences et Sports, vol.14, pp.201-204, 1999.
DOI : 10.1016/s0765-1597(99)80073-2

I. E. Faria, Energy expenditure, aerodynamics and medical problems in cycling : an update, Sports med, vol.14, pp.43-63, 1992.
DOI : 10.2165/00007256-199214010-00004

W. O. Fenn, Work against gravity and work due to velocity changes in running, Am. J. Physiol, vol.93, pp.433-462, 1930.
DOI : 10.1152/ajplegacy.1930.93.2.433

C. Foster, L. L. Hector, R. Welsh, M. Schrager, M. A. Green et al., Effects of specific versus cross-training on running performance, Eur.J.Appl.Physiol, vol.70, pp.367-372, 1995.
DOI : 10.1007/bf00865035

M. P. Francescato, M. Girardis, and P. E. Di-prampero, Oxygen cost of internal work during cycling, Eur.J.Appl.Physiol, vol.72, pp.51-57, 1995.
DOI : 10.1007/bf00964114

A. Fuglevand, K. Zachowski, K. Huey, and R. Enoka, Impairement of neuromuscular propagation during human fatiguing contractions at submaximal forces
DOI : 10.1113/jphysiol.1993.sp019486

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1175228/pdf

, J.Physiol. (Lond.), vol.460, pp.549-572

G. A. Gaesser and G. A. Brooks, Muscular efficiency during steady-rate exercise: effects of speed and work rate, 1975.
DOI : 10.1152/jappl.1975.38.6.1132

, Appl.Physiol, vol.38, pp.1132-1139

I. Garside and D. Doran, Effects of bicycle frame ergonomics on triathlon 10-km running performance, J. Sports Sci, vol.18, pp.825-833, 2000.

C. L. Gibbs and W. R. Gibson, Energy production of the rat soleus muscle, Am. J. Phyiol, vol.223, pp.864-871, 1972.

G. Goldspink, Energy turnover during contraction of different types of muscles, pp.27-39, 1978.

P. D. Gollnick, K. Piehl, and B. Saltin, , 1974.

, J.Physiol, pp.47-57

S. Goto, S. Toyoshima, and T. Hoshikawa, Study of the integrated EMG of leg muscles during pedaling at various loads, frequency, and equivalent power, 1976.

M. D. Baltimore, , pp.246-252

R. W. Gotshall, T. A. Bauer, and S. L. Fahmer, Cycling cadence alters exercise hemodynamics, Int.J.Sports.Med, vol.17, pp.17-21, 1996.

J. S. Gottschall and B. M. Palmer, Acute effects of cycling on running step length and step frequency, 2000.

, J. Strength Conditioning Research, vol.14, pp.97-101

R. J. Gregor, J. P. Broker, and M. M. Ryan, The biomechanics of cycling, Exerc. Sci. Review, vol.9, pp.127-168, 1991.

C. Y. Guezennec, J. M. Vallier, A. X. Bigard, and A. Durey, , 1996.

, Eur.J.Appl.Physiol, vol.73, pp.440-445

R. D. Hagan, S. E. Weis, and P. B. Raven, Effect of pedal rate on cardiorespiratory responses during continuous exercise, Med. Sci. Sport. Exerc, vol.24, pp.1088-1095, 1992.

J. M. Hagberg, J. P. Mullin, M. D. Giese, and E. Spitznagel, Effect of pedaling rate on submaximal exercise responses of competitive cyclists, J.Appl.Physiol, vol.51, pp.447-451, 1981.

J. M. Hagberg, J. P. Mullin, and F. J. Nagle, Oxygen consumption during constant-load exercise, 1978.

, Appl.Physiol, vol.45, pp.381-384

C. Hanon, C. Thépaut-mathieu, C. Hausswirth, L. Chevalier, and J. M. , Electromyogram as an indicator of neuromuscular fatigue during incremental exercise, Eur.J.Appl.Physiol, vol.78, pp.315-323, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01623789

C. Hausswirth, A. X. Bigard, M. Berthelot, M. Thomaidis, and C. Y. Guezennec, Variability in energy cost of running at the end of a triathlon and a marathon, Int.J.Sports.Med, vol.17, pp.572-579, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01781727

C. Hausswirth, A. X. Bigard, and C. Y. Guezennec, , 1997.

, Int.J.Sports.Med, vol.18, pp.330-339

C. Hausswirth, A. X. Bigard, L. Chevalier, and J. M. , , 1997.

, Int.J.Sports.Med, vol.18, pp.449-453

C. Hausswirth and J. Brisswalter, , 1999.

, Le coût énergétique de la course à pied de durée prolongée: étude des paramètres, Med.Sci.Sports.Exerc, vol.19, pp.51-55

W. M. Kohrt, J. S. O'connor, and J. S. Skinner, Longitudinal assessment of responses by triathletes to swimming, cycling, and running, Med.Sci.Sports.Exerc, vol.21, pp.569-575, 1989.

R. B. Kreider, T. Boone, W. R. Thompson, S. Burkes, and C. W. Cortes, Cardiovascular and thermal responses of triathlon performance, 1988.

, Med.Sci.Sports.Exerc, vol.20, pp.385-390

R. B. Kreider, D. E. Cundiff, J. B. Hammett, C. W. Cortes, and K. W. Williams, Effect of cycling on running performance in triathletes, Annals of Sports Med, vol.3, pp.220-225, 1988.

M. J. Kushmerick and R. E. Davies, The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscle, 1978.

, Proc R Soc Lond (Biol), vol.1174, pp.315-353

S. M. Jones and L. Passfield, The dynamic calibration of bicycle power measuring cranks, The Engineering of Sports, pp.265-274, 1998.

M. A. Lafortune and P. R. Cavanagh, Effectiveness and efficiency during bicycle riding, In Biomechanics VIII-B, pp.928-936, 1983.

C. Lajoie, L. Laurencelle, and F. Trudeau, Physiological responses to cycling for 60 minutes at maximal lactate steady state, Can.J.Appl.Physiol, vol.25, pp.250-261, 2000.
DOI : 10.1139/h00-019

G. J. Landers, B. A. Blanksby, T. R. Ackland, and D. Smith, Morphology and performance of world championship triathletes, Annals of Hum. Biol, vol.27, pp.387-400, 2000.
DOI : 10.1080/03014460050044865

N. M. Laurenson, K. Y. Fulcher, and P. Korkia, Physiological characteristics of elite and club level female during running, Int.J.Sport.Med, vol.14, pp.445-449, 1993.
DOI : 10.1055/s-2007-1021210

R. Lepers, M. L. Pousson, N. A. Maffiuletti, A. Martin, and J. Van-hoecke, The effects of a prolonged running exercice on strength characteristics, Int.J.Sport.Med, vol.21, pp.275-280, 2000.

R. Lepers, C. Hausswirth, N. A. Maffiuletti, J. Brisswalter, and J. Van-hoecke, Evidence of neuromuscular fatigue after prolonged cycling exercise, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01762670

, Med.Sci.Sports.Exerc, vol.32, pp.1880-1886

R. Lepers, G. Y. Millet, N. A. Maffiuletti, C. Hausswirth, and J. Brisswalter, Effect of pedalling rates on physiological response during an endurance cycling exercise, 2001.

, Eur.J.Appl.Physiol, vol.85, pp.392-395

R. Lepers, N. A. Maffiuletti, and G. Y. Millet, Effect of cycling cadence on contractile and neural properties of knee extensors, Med.Sci.Sports.Exerc, vol.33, pp.1882-1888, 2001.

R. Lepers, N. A. Maffiuletti, L. Rochette, J. Brugniaux, and G. Y. Millet, Neuromuscular fatigue during a long-duration cycling exercise, 2002.

, Appl.Phyiol, vol.92, pp.1487-1493

S. F. Lewis, P. G. Snell, and W. F. Taylor, Role of muscle mass and mode of contraction in circulatory responses to exercise, J.Appl.Phyiol, vol.58, pp.146-151, 1985.

H. Löllgen, T. Graham, and G. Sjoggard, Muscle metabolites, force, and perceived exertion bicycling at varying pedal rates, Med. Sci. Sports. Exerc, vol.12, pp.345-351, 1980.

A. Lucia, J. Pardo, A. Durantez, J. Hoyos, and J. L. Chicharro, Physiological differences between professional and elite road cyclists, Int. J. Sport. Med, vol.19, pp.342-348, 1998.

A. Lucia, J. Hoyos, and J. L. Chicharro, The slow component of VO 2 in professional cyclists, 2000.

, J. Sports. Med, vol.34, pp.367-374

A. Lucia, J. Hoyos, and J. L. Chicharro, Preferred pedalling cadence in professional cycling, 2001.

, Med. Sci. Sports. Exerc, vol.33, pp.1361-66

B. R. Macintosh, R. R. Neptune, and J. F. Horton, ) Cadence, power and muscle activation in cycle ergometry, 2000.

, Med. Sci.Sports.Exerc, vol.32, pp.1281-1287

G. A. Mckay and E. W. Banister, A comparaison of maximum oxygen uptake determination by bicycle ergometry at various pedaling frequencies and by treadmill running at various speeds, 1976.

, Eur.J.Appl.Physiol, vol.35, pp.191-200

I. Margaritis, Facteurs limitants de la performance en triathlon, Can.J.Appl.Physiol, vol.21, pp.1-15, 1996.

A. P. Marsh and P. E. Martin, The association between cycling experience and preferred and most economical cadences, Med.Sci.Sports.Exerc, vol.25, pp.1269-1274, 1993.

A. P. Marsh and P. E. Martin, The relationship between cadence and lower extremity EMG in cyclists and noncyclists, 1995.

, Med.Sci.Sports.Exerc, vol.27, pp.217-225

A. P. Marsh and P. E. Martin, Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences, 1997.

, Med.Sci.Sports.Exerc, vol.29, pp.1225-1232

A. P. Marsh and P. E. Martin, Perceived exertion and the preferred cycling cadence, 1998.

, Med.Sci.Sports.Exerc, vol.30, pp.942-948

A. P. Marsh, P. E. Martin, and K. O. Foley, Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling, Med.Sci.Sports.Exerc, vol.32, pp.1630-1634, 2000.

A. P. Marsh, P. E. Martin, and D. J. Sanderson, Is a joint moment-based cost function associated with preferred cycling cadence ?, J. Biomechanics, vol.33, pp.173-180, 2000.

P. E. Martin, G. D. Heise, and D. W. Morgan, Interrelationships between mechanical power, energy transfers, and walking and running economy, 1993.

, Med.Sci.Sports.Exerc, vol.25, pp.508-515

B. Maton, , 1981.

, Eur.J.Appl.Physiol, vol.46, pp.271-281

J. L. Medbø, A. C. Mohn, I. Tabata, R. Bahr, O. Vaage et al., , 1988.

, J.Appl.Physiol, vol.64, pp.50-60

G. P. Millet, G. Y. Millet, M. D. Hofmann, and R. B. Candau, Alterations in running economy and mechanics after maximal cycling in triathletes : influence of performance level, 2000.

, Int.J.Sport.Med, vol.21, pp.127-132

G. P. Millet and V. E. Vleck, Physiological and biomechanical adaptations to the cycle to run transition in olympic triathlon: review and practical recommendations for training, 2000.

, Br. J. Sports. Med, vol.34, pp.384-390

G. P. Millet, G. Y. Millet, and R. B. Candau, , 2001.

, Duration and seriousness of running mechanics alterations after maximal cycling in triathletesJ, Sports Med. Phys. Fitness, vol.41, pp.147-153

G. Y. Millet, R. Lepers, N. A. Maffiuletti, N. Babault, V. Martin et al., Alterations of neuromuscular function after an ultramarathon, 2002.

, J. Appl. Physiol, vol.92, pp.486-492

H. S. Milner-brown and R. B. Stein, The relation between the surface electromyogram and muscular force, 1975.

, J. Physiol, vol.246, pp.549-569

H. Miura, K. Kitagawa, and T. Ishika, , 1997.

, Int.J.Sports.Med, vol.18, pp.276-280

D. W. Morgan, P. E. Martin, and G. S. Krahenbuhl, Factors affecting running economy, Sports Med, vol.7, pp.310-330, 1989.

T. Moritani, A. Nagata, and M. Muro, Electromyographic manifestations of muscular fatigue, 1982.

, Med.Sci.Sports.Exerc, vol.14, pp.198-202

D. L. Mutton, S. F. Loy, D. M. Rogers, G. J. Holland, W. J. Vincent et al., Effect of run vs combined cycle/run training on VO 2 max and running performance, Med.Sci.Sports.Exerc, vol.12, pp.1393-1397, 1993.

R. R. Neptune, S. A. Kautz, and M. L. Hull, , 1997.

J. Biomechanics, , vol.30, pp.1051-1058

R. R. Neptune and M. L. Hull, , 1998.

, J. Biomech. Engineering, vol.120, pp.334-341

R. R. Neptune and A. J. Van-den-bogert, Standard mechanical energy analyses do not correlate with muscle work in cycling, J. Biomechanics, vol.31, pp.239-245, 1998.

R. R. Neptune and W. Herzog, The association between negative muscle work and pedaling rate, 1999.

J. Biomechanics, , vol.32, pp.1021-1026

R. R. Neptune and M. L. Hull, A theoretical analysis of preferred pedaling rate selection in endurance cycling, 1999.

J. Biomechanics, , vol.32, pp.409-415

R. R. Neptune and W. Herzog, Adaptation of muscle coordination to altered task mechanics during steady-state cycling, 2000.

J. Biomechanics, , vol.33, pp.165-172

B. L. Nickleberry and G. A. Brooks, No effect of cycling experience on leg cycle ergometer efficiency, 1996.

, Med.Sci.Sports.Exerc, vol.28, pp.1396-1401

C. Nicol, P. V. Komi, and P. Marconnet, Fatigue effects of marathon running on neuromuscular performance. I. Changes in muscle in force and stiffness characteristics, 1991.

. Scand, J. Med. Sci. Sports, vol.1, pp.10-17

M. L. O'toole and P. S. Douglas, Applied Physiology of Triathlon, Sports Med, vol.19, pp.251-267, 1995.

M. L. O'toole, P. S. Douglas, and W. D. Hiller, , 1989.

, Lactate, oxygen uptake, and cycling performance in triathletes, Int.J.Sports.Med, vol.10, pp.413-418

S. Padilla, I. Mujika, G. Cuesta, and J. J. Goirirna, Level ground and uphill cycling ability in professional road cycling, Med.Sci.Sports.Exerc, vol.31, pp.878-885, 1999.

G. S. Palmer, T. D. Noakes, and J. A. Hawley, Effects of steady-state versus stochastic exercise on subsequent cycling performance, Med.Sci.Sports.Exerc, vol.29, pp.684-687, 1997.

G. S. Palmer, L. B. Borghouts, and T. D. Noakes, Metabolic and performance responses to constant-load vs. variable intensity exercise in trained cyclists, 1999.

, J. Appl. Physiol, vol.87, pp.1186-1196

K. B. Pandolf and B. J. Noble, The effect of pedaling speed and resistance changes on perceived exertion for equivalent power outputs on the bicycle ergometer, 1973.

, Med.Sci.Sports.Exerc, vol.5, pp.132-136

R. P. Patterson and M. I. Moreno, Bicycle pedalling forces as a function of pedaling rate and power output, Med.Sci.Sports.Exerc, vol.22, pp.512-516, 1990.

M. R. Pierrynowski, D. A. Winter, and R. W. Norman, Transfers of mechanical energy within the total body and mechanical efficiency during treadmill walking, 1980.

, Ergonomics, vol.23, pp.147-156

D. C. Poole and R. S. Richardson, Determinants of oxygen uptake, Sports Med, vol.24, pp.308-320, 1997.

D. B. Pyne, T. Boston, D. T. Martin, and A. Logan, Evaluation of the lactate pro blood lactate analyser, Eur.J.Appl.Physiol, vol.82, pp.112-116, 2000.

E. J. Quigley and J. G. Richards, The effects of cycling on running mechanics, 1996.

, Appl. Biomech, vol.12, pp.470-479

C. C. Raasch, F. E. Zajac, B. Ma, and W. S. Levine, Muscle coordination of maximum-speed pedaling, 1997.
DOI : 10.1016/s0021-9290(96)00188-1

, J. Appl. Biomech, vol.30, pp.595-602

R. L. Ramsay, P. D. Davies, and N. C. Sharp, , 2001.

, Med.Sci.Sports.Exerc, vol.33, p.341

R. Redfield and M. L. Hull, On the relation between joint moments and pedalling rates at constant power in bicycling, J. Biomech, vol.19, pp.317-329, 1986.

K. Sahlin and J. Y. Seger, Effects of prolonged exercise on the contractile properties of human quadriceps muscle, 1995.

, Eur. J. Appl. Physiol, vol.71, pp.180-186

A. St-clair-gibson, E. J. Schabort, and T. D. Noakes, Reduced neuromuscular activity and force generation during prolonged cycling, Am. J. Physiol. Regulatory Integrative Comp. Physiol, vol.281, pp.187-196, 2001.

D. J. Sanderson, The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists, 1991.

, J. Sports Sci, vol.9, pp.191-203

D. J. Sanderson, E. M. Hennig, and A. H. Black, The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists, 2000.

, J. Sports Sci, vol.18, pp.173-181

A. J. Sargeant and A. Beelen, Human muscle fatigue in dynamic, pp.81-92, 1993.

A. J. Sargeant, Human power output and muscle fatigue, Int.J.Sports.Med, vol.15, pp.116-121, 1994.

A. J. Sargeant, P. Marconnet, B. Saltin, P. V. Komi, and J. Poortmans, Human power output-Determinants of maximum performance, Med Sport Sci. Basel, Karger, vol.41, pp.10-20, 1996.

M. J. Saunders, E. M. Evans, S. A. Arngrimsson, J. D. Allison, G. L. Warren et al., Muscle activation and the slow component rise in oxygen uptake during cycling, Med.Sci.Sports.Exerc, vol.32, pp.2040-2045, 2000.

E. J. Schabort, S. C. Killian, A. S. Gibson, J. A. Hawley, and T. D. Noakes, Prediction of triathlon race time from laboratory testing in national triathletes, Med.Sci.Sports.Exerc, vol.32, pp.844-849, 2000.

B. W. Scheuermann, B. D. Hoelting, M. L. Noble, and T. J. Barstow, , 2001.

, J. Physiol, vol.531, pp.245-256

J. J. Seabury, W. C. Adams, and M. R. Ramey, Influence of pedaling rate and power output on energy expenditure during bicycle ergometry, Ergonomics, vol.20, pp.491-498, 1977.

M. Shinohara and T. Moritani, Increase in neuromuscular activity and oxygen uptake during heavy exercise, 1992.

, Ann.Physiol.Anthrop, vol.11, pp.257-262

L. S. Sidossis, J. F. Horowitz, and E. F. Coyle, Load and velocity of contraction influence gross and delta mechanical efficiency, Int. J. Sports Med, vol.13, pp.407-411, 1992.

G. G. Sleivert and H. A. Wenger, Physiological predictors of short-course triathlon performance, 1993.

, Med.Sci.Sports.Exerc, vol.25, pp.871-876

G. G. Sleivert and D. S. Rowlands, Physical and physiological factors associated with success in the triathlon, Sports Med, vol.22, pp.8-18, 1996.

D. Smith, H. Lee, and R. Pickard, Power demands of the cycle leg during elite triathlon competition, 1999.

, ème congrès international sur le Triathlon, pp.224-230

W. A. Sparrow, The efficiency of skilled performance, 1983.

, J. Mot. Behav, vol.15, pp.237-261

W. N. Stainsby, L. B. Gladden, J. K. Barclay, and J. K. Wilson, Exercise efficiency: validity of base-line subtractions, 1980.

, J.Appl.Physiol, vol.48, pp.518-522

K. Stuart, E. T. Howley, B. Gladden, and R. H. Cox, Efficiency of trained subjects differing in maximal oxygen-uptake and type of training, J.Appl.Physiol, vol.50, pp.444-449, 1981.

Y. Suzuki, Mechanical efficiency of fast and slow twitch muscle fibers in man during cycling, J.Appl.Physiol, vol.47, pp.263-267, 1979.

T. Takaishi, Y. Yasuda, and T. Moritani, Neuromuscular fatigue during prolonged pedalling exercise at different pedalling rates, Eur.J.Appl.Physiol, vol.69, pp.154-158, 1994.

T. Takaishi, Y. Yasuda, T. Ono, and T. Moritani, Optimal pedaling rate estimated from neuromuscular fatigue for cyclists, Med.Sci.Sports.Exerc, vol.28, pp.1492-1497, 1996.

T. Takaishi, T. Yamamoto, T. Ono, T. Ito, and T. Moritani, Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists, 1998.

, Med.Sci.Sports.Exerc, vol.30, pp.442-449

H. Tanaka, Effects of cross training : transfer to training effects on VO 2 max between cycling, running and swimming, 1994.

, Sports Med, vol.18, pp.330-339

G. J. Van-ingen-schenau and P. R. Cavanagh, Power equations in endurance sports, 1990.

J. Biomechanics, , vol.23, pp.865-881

J. T. Vitasalo, P. V. Komi, I. Jacobs, and J. Karlsson, Effects of prolonged cross-country skiing on neuromuscular performance, International Series on Sport Sciences, 1982.

. Champaign, ILHuman Kinetics Publishers, vol.12, pp.191-198

N. K. Vollestad and P. S. Blom, Effects of varying exercise intensity on glycogen depletion in human muscle fibres, Acta.Physiol.Scand, vol.125, pp.395-495, 1985.

K. Wasserman, B. J. Whipp, S. N. Koyal, and W. L. Beaver, Anaerobic threshold and respiratory gas exchange during exercise, 1973.

, J.Appl.Physiol, vol.35, pp.236-243

B. J. Whipp, The slow component of O2 uptake kinetics during heavy exercise, 1994.

, Med.Sci.Sports.Exerc, vol.26, pp.1319-1326

B. J. Whipp and K. Wasserman, Efficiency of muscular work, 1969.

, Appl.Physiol, vol.26, pp.644-648

J. J. Widrick, P. S. Freedson, and J. Hamill, Effect of internal work on the calculation of optimal pedaling rates, Med.Sci.Sports.Exerc, vol.24, pp.376-382, 1992.

W. T. Willis and M. R. Jackman, Mitochondrial function during heavy exercise, 1994.

, Med.Sci.Sports.Exerc, vol.26, pp.1347-1354

D. A. Winter, A new definition of mechanical work done in human movement, 1979.

, J.Appl.Physiol, vol.46, pp.79-83

D. A. Winter, Mechanical work, energy, and power. In: Winter DA (ed) Biomechanics and motor control of human movement, 1990.

. Wiley, , pp.103-139

M. Witt, Co-ordination of leg muscles during cycling and running in triathlon, 1993.

, XIV th Congress of International Society of Biomechanics, pp.1470-1471

R. C. Woledge, Possible effects of fatigue on muscle efficiency, 1998.

, Acta.Physiol.Scand, vol.162, pp.267-273

S. Zhou, S. J. Robson, M. J. King, and A. J. Davie, Correlations between short-course triathlon performance and physiological variables determined in laboratory cycle and treadmill tests, 1997.

, J.Sports.Med.Phys.Fitness, vol.37, pp.122-152

, Dans ce contexte, plusieurs études ont été réalisées : La première étude compare l'influence d'un 750 m de natation sollicitant soit les bras, soit les jambes, soit les bras et les jambes sur la dépense énergétique lors d'un exercice subséquent de 15 min de cyclisme. Le principal résultat montre que la sollicitation préalable des bras uniquement n'entraîne aucune variation significative des paramètres physiologiques mesurés en cyclisme, Résumé Ce travail a pour objectif d'étudier les adaptations physiologiques et biomécaniques au cours des enchaînements natation-cyclisme et cyclisme-course à pied d'un triathlon

, La deuxième et la troisième étude s'intéressent à l'influence d'une diminution de l'intensité relative de la nage au cours d'un 750 m, soit par le port d'une combinaison

, et d'autre part que les effets combinés du port de combinaison et du drafting entraînent une augmentation supplémentaire du rendement de 4,8%. La quatrième étude a pour objectif d'analyser l'influence de la cadence de pédalage sur l'adaptation physiologique lors d'un enchaînement natation-cyclisme. Le principal résultat indique que la dépense énergétique en cyclisme est significativement inférieure lors d'un enchaînement natation-cyclisme (1500m30min) réalisé à une cadence proche de la cadence énergétiquement optimale (75 rév.min-1 ) comparativement à une cadence proche de la cadence classiquement adoptée par les triathlètes en compétition (95 rév.min-1 ). Ces résultats soulignent l'influence d'une épreuve préalable de natation de courte distance sur la dépense énergétique en cyclisme, Les résultats montrent d'une part que le port de combinaison permet d'améliorer le rendement mécanique du cyclisme de 12%

, L'objectif de notre second travail lié à l'enchaînement cyclisme-course à pied était d'étudier, les critères qui déterminent le choix de la cadence de pédalage et les conséquences de ce choix sur a) l'adaptation en cyclisme avec la durée de l'exercice et b) l'adaptation en course à pied (Càp) lors d'un enchaînement cyclisme-course à pied. Notre principale expérimentation a étudié l

, CEO = 72 rpm ; 90 rpm = optimum mécanique théorique) sur l'adaptation lors de la Càp subséquente. Le principal résultat met en évidence que le choix d'une CEO induit une réduction de

, lors du cyclisme (30-min) et de la Càp (15-min) comparativement aux autres conditions expérimentales

, Le principal résultat ne montre aucune influence significative de la cadence sur la performance. Cependant, un effet différencié de la cadence est observé sur les réponses ventilatoires et cinématiques lors de la Càp subséquente. Nos résultats suggèrent que le choix de la cadence en triathlon peut influencer l'adaptation physiologique du sujet lors de l'enchaînement cyclisme-Càp, Suite à ces résultats, l'objectif de la troisième étude est d'analyser l'effet de 3 cadences différentes, vol.60