, Les déplacements du sujet se font sur des formes variées (Figure 14)

, Pour chaque type de forme (gauche), la rotation des marqueurs du casque dans le plan horizontal et la distance entre les deux marqueurs sont présentées (centre), Figure, vol.14

, Le Tableau 11 et le Tableau 12 présentent les résultats obtenus pour le calcul de la

P. Dabnichki, S. Aritan, M. Lauder, and D. Tsirakos, Accuracy of kinematic data collection, filtering and numerical differentiation. The engineering of sport, p.119, 1996.

Y. Ehara, H. Fujimoto, . Miyazaki, . Tanaka, and . Yamamoto, Comparison of the performance of 3D camera systems, Gait and Posture, vol.3, pp.166-169, 1995.

Y. Ehara, H. Fujimoto, . Miyazaki, . Mochimaru, . Tanaka et al., Comparison of the performance of 3D camera systems II, Gait and Posture, vol.5, pp.251-255, 1997.

G. Ferrigno and A. Pedotti, ELITE: A digital dedicated hardware system for movement analysis via real-time TV signal processing, Ieee Transactions on Biomedical Engineering, vol.32, pp.943-949, 1985.

A. Gruen, Fundamentals of videogrammetry-A review, Human Movement Science, vol.16, pp.155-187, 1997.

M. A. Lauder, P. Dabnichki, R. M. Bartlett, and S. Aritan, The accuracy of kinematic data collected from underwater three-dimensional analysis. The engineering of sport, pp.303-312, 1996.

L. W. Laways, T. M. Conlan, and J. A. Miles, Static and dynamic accuracy determination of a three-dimensional motion analysis system. The engineering of sport, pp.289-296, 1996.

J. G. Richards, The mesasurement of human motion: A comparison of commercially available systems, Hum.Mov.Sci, vol.18, pp.589-602, 1999.

G. Sandstrom, A. Backstrom, and K. A. Olsson, REMAC: A video-based motion analyser interfacing to an existing flexible sampling system, J.Neurosci.Methods, vol.69, pp.205-211, 1996.