S. Achard and E. Bullmore, Efficiency and cost of economical brain functional networks, PLoS Comput. Biol, vol.3, 2007.

A. L. Alexander, J. E. Lee, M. Lazar, and S. Field, Diffusion tensor imaging of the brain, Neurotherapeutics, vol.4, pp.316-329, 2007.

Y. Assaf and O. Pasternak, Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review, J. Mol. Neurosci, vol.34, pp.51-61, 2008.

M. Bangert and G. Schlaug, Specialization of the specialized in features of external human brain morphology, Eur. J. Neurosci, vol.24, pp.1832-1834, 2006.

A. L. Barabasi and R. Albert, Emergence of scaling in random networks, Science, vol.286, pp.509-512, 1999.

D. S. Bassett, N. F. Wymbs, M. P. Rombach, M. A. Porter, P. J. Mucha et al., Task-based core-periphery organization of human brain dynamics, PLoS Comput. Biol, vol.9, 2013.

C. Beaulieu, The basic of anisotropic water diffusion in the nervous system -a technical review, NMR Biomed, vol.15, pp.435-455, 2002.

C. Beaulieu, The biological basis of anisotropic water diffusion, Diffusion MRI: From Quantitative Measurement to In-vivo. Neuroanatomy, pp.105-126, 2009.

S. L. Bengtsson, Z. Nagy, S. Skare, L. Forsman, H. Forssberg et al., Extensive piano practicing has regionally specific effects on white matter development, Nat. Neurosci, vol.8, pp.1148-1150, 2005.

P. Bermudez, J. P. Lerch, A. C. Evans, and R. J. Zatorre, Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry, Cereb. Cortex, vol.19, pp.1583-1596, 2009.

L. Bezzola, S. Merillat, and L. Jancke, Motor training-induced neuroplasticity, J. Gerontopsychol. Geriatric Psychiatry, vol.25, pp.189-197, 2012.

S. Brown, M. J. Martinez, and L. M. Parsons, The neural basis of human dance, Cereb. Cortex, vol.16, pp.1157-1167, 2006.

C. Buchel and K. J. Friston, Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI, Cereb. Cortex, vol.7, pp.768-778, 1997.

R. L. Buckner, F. M. Krienen, and B. T. Yeo, Opportunitiesandlimitationsofintrinsic functional connectivity MRI, Nat. Neurosci, vol.16, pp.832-837, 2013.

E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci, vol.10, p.2575, 2009.

M. Buschkuehl, S. M. Jaeggi, and J. Jonides, Neuronal effects following working memory training, Dev. Cogn. Neurosci, vol.15, pp.167-179, 2012.

B. Calvo-merino, D. E. Glaser, J. Grezes, R. E. Passingham, and P. Haggard, Action observation and acquired motor skills: an fMRI study with expert dancers, Cereb. Cortex, vol.15, pp.1243-1249, 2005.

L. Carretie, M. Rios, B. S. De-la-gandara, M. Tapia, J. Albert et al., The striatum beyond reward: caudate responds intensely to unpleasant pictures, Neuroscience, vol.164, pp.1615-1622, 2009.

Y. Chang, Reorganization and plastic changes of the human brain associated with skill learning and expertise, Front. Hum. Neurosci, vol.8, p.35, 2014.

M. W. Cole, D. S. Bassett, J. D. Power, T. S. Braver, and S. E. Petersen, Intrinsic and task-evoked network architectures of the human brain, Neuron, vol.83, pp.238-251, 2014.

L. Concha, A macroscopic view of microstructure: Using diffusion-weighted images to infer damage, repair, and plasticity of white matter, Neuroscience, vol.276, pp.14-28, 2014.

L. Concha, D. J. Livy, C. Beaulieu, B. M. Wheatley, and D. W. Gross, In vivo diffusion tensor imaging and histopathology of the fimbria-fornix in temporal lobe epilepsy, J. Neurosci, vol.30, pp.996-1002, 2010.

U. Debarnot, M. Sperduti, F. Di-rienzo, and A. Guillot, Expertsbodies, expertsminds: how physical and mental training shape the brain, Front. Hum. Neurosci, vol.8, 2014.

X. Di, S. Zhu, H. Jin, P. Wang, Z. Ye et al., Altered resting brain function and structure in professional badminton players, Brain Connect, vol.2, pp.225-233, 2012.

L. Douw, M. M. Schoonheim, D. Landi, . Van-der-meer, J. Geurts et al., Cognition is related to resting-state small-world network topology: an magnetoencephalographic study, Neuroscience, vol.175, pp.169-177, 2011.

J. Doyon, A. W. Song, A. Karni, F. Lalonde, M. M. Adams et al., Experience-dependent changes in cerebellar contributions to motor sequence learning, Proc. Natl. Acad. Sci, vol.99, issue.2, pp.1017-1022, 2002.

K. A. Ericsson and A. C. Lehmann, Expert and exceptional performance: evidence of maximal adaptation to task constraints, Annu. Rev. Psychol, vol.47, pp.273-305, 1996.

B. Fauvel, M. Groussard, G. Chételat, M. Fouquet, B. Landeau et al., Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest, Neuroimage, vol.90, pp.179-188, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00939280

M. Filippi, A. Ceccarelli, E. Pagani, R. Gatti, A. Rossi et al., Motor learning in healthy humans is associated to gray matter changes: a tensor-based morphometry study, PLoS One, vol.5, 2010.

J. Freeman, G. J. Brouwer, D. J. Heeger, and E. P. Merriam, Orientation decoding depends on maps, not columns, J. Neurosci, vol.31, pp.4792-4804, 2011.

K. J. Friston, Functional and effective connectivity in neuroimaging: a synthesis, Hum. Brain Mapp, vol.2, pp.56-78, 1994.

K. J. Friston, Functional and effective connectivity: a review, Brain Connect, vol.1, pp.13-36, 2011.

K. J. Friston, L. Harrison, and W. Penny, Dynamic causal modelling, Neuroimage, vol.19, issue.03, pp.202-209, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00388972

M. Fu and Y. Zuo, Experience-dependent structural plasticity in the cortex, Trends Neurosci, vol.34, pp.177-187, 2011.

C. Gaser and G. Schlaug, Brain structures differ between musicians and non-musicians, J. Neurosci, vol.23, pp.9240-9245, 2003.

P. Gerber, L. Schlaffke, S. Heba, M. W. Greenlee, T. Schultz et al., Juggling revisited -a voxel-based morphometry study with expert jugglers, Neuroimage, vol.95, pp.320-325, 2014.

R. Goebel, A. Roebroeck, D. S. Kim, and E. Formisano, Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping, Magn. Reson. Imaging, vol.21, pp.1251-1261, 2003.

G. Goldberg, Supplementary motor area structure and function: review and hypotheses, Behav. Brain Sci, vol.8, pp.567-588, 1985.

C. D. Good, I. Johnsrude, J. Ashburner, R. N. Henson, K. J. Friston et al., Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains, Neuroimage, vol.14, pp.685-700, 2001.

L. Gootjes, A. Bouma, J. W. Van-strien, P. Scheltens, and C. J. Stam, Attention modulates hemispheric differences in functional connectivity evidence from MEG recordings, Neuroimage, vol.30, pp.245-253, 2006.

E. Gowen and R. Miall, Differentiation between external and internal cuing: an fMRI study comparing tracing with drawing, Neuroimage, vol.36, pp.396-410, 2007.

J. Grainger, B. Lété, D. Bertand, S. Dufau, and J. C. Ziegler, Evidence for multiple routes in learning to read, Cognition, vol.123, pp.280-292, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01152175

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, Functional connectivity in the resting brain: a network analysis of the default mode hypothesis, PNAS USA, vol.100, pp.253-258, 2003.

A. Guida, F. Gobet, H. Tardieu, and S. Nicolas, How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquision: a two-stage framework, Brain Cogn, vol.79, pp.221-244, 2012.

P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey et al., Mapping the structural core of human cerebral cortex, PLoS Biol, vol.6, 2008.

P. Hagmann, L. Jonasson, P. Maeder, J. P. Thiran, J. Van-wedeen et al., Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond, Radiographics, vol.26, pp.205-223, 2006.

Y. Han, H. Yang, Y. T. Lv, C. Z. Zhu, Y. He et al., Gray matter density and white matter integrity in pianists' brain: a combined structural and diffusion tensor MRI study, Neurosci. Lett, vol.459, pp.3-6, 2009.

J. Hanggi, S. Koeneke, L. Bezzola, and L. Jancke, Structural neuroplasticity in the sensorimotor network of professional female ballet dancers, Hum. Brain Mapp, vol.31, pp.1196-1206, 2010.

R. M. Hardwick, C. Rottschy, R. C. Miall, and S. B. Eickhoff, A quantitative metaanalysis and review of motor learning in the human brain, Neuroimage, vol.67, pp.283-297, 2013.

B. Haslinger, P. Erhard, E. Altenmuller, A. Hennenlotter, M. Schwaiger et al., Reduced recruitment of motor association areas during bimanual coordination in concert pianists, Hum. Brain Mapp, vol.22, pp.206-215, 2004.

Y. He, J. Wang, L. Wang, Z. J. Chen, C. Yan et al., Uncovering intrinsic modular organization of spontaneous brain activity in humans, PLoS One, vol.4, 2009.

S. C. Herholz and R. J. Zatorre, Musical training as a framework for brain plasticity: behaviour, function, and structure, Neuron, vol.76, pp.486-502, 2012.

A. M. Hermundstad, D. S. Bassett, K. S. Brown, E. M. Aminoff, D. Clewett et al., Structural foundations of resting-state and task-based functional connectivity in the human brain, PNAS USA, vol.110, pp.6169-6174, 2013.

A. Imfeld, M. S. Oechslin, M. Meyer, T. Loenneker, and L. Jancke, White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study, Neuroimage, vol.46, pp.600-607, 2009.

C. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran et al., Predicting human resting-state functional connectivity from structural connectivity, PNAS USA, vol.106, pp.2035-2040, 2009.

R. Huang, M. Lu, Z. Song, and J. Wang, Long-term intensive training induced brain structural changes in world class gymnasts, Brain Struct. Funct, vol.220, pp.625-644, 2015.

K. Hufner, C. Binetti, D. A. Hamilton, T. Stephan, V. L. Flanagin et al., Structural and functional plasticity of the hippocampal formation in professional dancers and slackliners, Hippocampus, vol.21, pp.855-865, 2011.

C. Hutton, E. De-vitae, J. Ashburner, R. Deichmann, and R. Turner, Voxel-based cortical thickness measurements in MRI, Neuroimage, vol.40, pp.1701-1710, 2008.

K. L. Hyde, J. Lerch, A. Norton, M. Forgeard, E. Winner et al., Musical training shapes structural brain development, J. Neurosci, vol.29, pp.3019-3025, 2009.

C. E. James, M. S. Oechslin, D. Van-de-ville, C. A. Hauert, C. Descloux et al., Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks, Brain Struct. Funct, vol.219, pp.353-366, 2014.

L. Jancke, Music drives brain plasticity F1000, Biol. Rep, vol.1, 2009.

L. Jancke, S. Koeneke, A. Hoppe, C. Rominger, and J. Hanggi, The architecture of the golfer's brain, PLoS One, vol.4, 2009.

J. L. Jensen, P. C. Marstrand, and J. B. Nielsen, Motor skill training and strength training are associated with different plastic changes in the central nervous system, J. Appl. Physiol, vol.99, pp.1558-1568, 2005.

B. Jeurissen, A. Leemans, J. D. Tournier, D. K. Jones, and J. Sijbers, Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging, Hum. Brain Mapp, vol.34, pp.2747-2766, 2013.

M. Jueptner, K. M. Stephan, C. D. Frith, D. J. Brooks, R. S. Frackowiak et al., Anatomy of motor learning. I. Frontal cortex and attention to action, J. Neurophysiol, vol.77, pp.1313-1324, 1997.

O. P. Keifer, R. C. Hurt, D. A. Gutman, S. D. Keilholz, S. L. Gourley et al., Voxel-based morphometry predicts shifts in dendritic spine density and morphology with auditory fear conditioning, Nat. Commun, vol.6, 2015.

P. E. Keller, Attentional resource allocation in musical ensemble performance, Psychology of music. Psychol. Music, vol.29, pp.20-38, 2001.

A. M. Kelly and H. Garavan, Human functional neuroimaging of brain changes associated with practice, Cereb. Cortex, vol.15, pp.1089-1102, 2005.

S. W. Kennerley, M. E. Walton, T. E. Behrens, M. J. Buckley, and M. F. Rushworth, Optimal decision making and the anterior cingulate cortex, Nat. Neurosci, vol.9, pp.940-947, 2006.

Y. T. Kim, J. H. Seo, H. J. Song, D. S. Yoo, H. J. Lee et al., Neural correlates related to action observation in expert archers, Behav. Brain Res, vol.223, pp.342-347, 2011.

M. A. Koch, D. G. Norris, and M. Hund-georgiadis, An investigation of functional and anatomical connectivity using magnetic resonance imaging, Neuroimage, vol.16, pp.241-250, 2002.

H. Kuruma, S. Watanabe, Y. Ikeda, A. Senoo, Y. Kikuchi et al., Neural mechanism of self-initiated and externally triggered finger movements, J. Phys. Ther. Sci, vol.19, pp.103-109, 2007.

S. M. Landi, F. Baguear, and V. Della-maggiore, One weekofmotor adaptation induces structural changes in primary motor cortex that predict long-term memory one year later, J. Neurosci, vol.31, pp.11808-11813, 2011.

V. Latora and M. Marchiori, Efficientbehaviorofsmall-worldnetworks, Phys RevLett, vol.87, 2001.

J. P. Lerch, A. P. Yiu, A. Martinez-canabal, T. Pekar, V. D. Bohbot et al., Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning, Neuroimage, vol.54, pp.2086-2095, 2011.

C. M. Lewis, A. Baldassarre, G. Committeri, G. L. Romani, and M. Corbetta, Learning sculpts the spontaneous activity of the resting human brain, PNAS, vol.106, pp.17558-17563, 2009.

J. Li, C. Luo, Y. Peng, Q. Xie, J. Gong et al., Probability diffusion tractography reveals improvement of structural network in musician, PLoS One, vol.8, 2014.

G. Li, H. He, M. Huang, X. Zhang, J. Lu et al., Identifying enhanced cortico-basal ganglia loops associated with prolonged dance training, Sci. Rep, vol.5, p.10271, 2015.

G. D. Logan, Toward an instance theory of automatization, Psychol. Rev, vol.95, pp.492-527, 1988.

C. Luo, Z. W. Guo, Y. X. Lai, W. Liao, Q. Liu et al., Musical training induces functional plasticity in perceptual and motor networks: insights from resting-state fMRI, PLoS One, vol.7, 2012.

C. Luo, S. Tu, Y. Peng, S. Gao, J. Li et al., Longterm effects of musical training and functional plasticity in salience system, Neural Plasticity, vol.180138, pp.1-13, 2014.

L. Ma, S. Narayana, D. A. Robin, P. T. Fox, and J. Xiong, Changesoccur inrestingstate network of motor system during 4 weeks of motor skill learning, Neuroimage, vol.58, pp.226-233, 2011.

R. A. Magill, Motor Learning and Control: Concepts and Applications, 2010.

H. Makino, E. U. Hwang, N. H. Hedrick, and T. Komiyama, Circuit mechanisms of sensorimotor learning, Neuron, vol.92, pp.705-721, 2016.

H. Manto, J. M. Bower, A. B. Conforto, J. M. Delgado-garcia, S. N. Da-guarda et al., Consensus paper; roles of the cerebellum in motor-the diversity of ideas on cerebellum involvement in movement, Cerebellum, vol.11, pp.457-487, 2012.

M. D. Mauk, J. F. Medina, W. L. Nores, and T. Ohyama, Cerebellar function: coordination, learning or timing?, Curr. Biol, vol.10, pp.584-588, 2000.

A. R. Mcintosh and M. Korostil, Interpretation of neuroimaging data basedon network concepts, Brain Imaging Behav, vol.2, pp.264-269, 2008.

A. R. Mcintosh and F. Gonzalez-lima, Structural equation modeling and its application to network analysis in functional brain imaging, Hum. Brain Mapp, vol.2, pp.2-22, 1994.

M. J. Mckeown, S. Makeig, G. G. Brown, T. P. Jung, S. S. Kindermann et al., Analysis of fMRI data by blind separation into independent spatial component, Hum. Brain Mapp, vol.6, pp.160-188, 1998.

A. Mechelli, C. J. Price, K. J. Friston, and J. Ashburner, Voxel-based morphometry of the human brain: methods and applications, Curr. Med. Imaging Rev, vol.1, pp.105-113, 2005.

I. Meister, T. Krings, H. Foltys, B. Boroojerdi, M. Muller et al., Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks: implications for cortical motor organization, Hum. Brain Mapp, vol.25, pp.345-352, 2005.

M. Mennes, C. Kelly, S. Colcombe, F. X. Castellanos, and M. P. Milham, The extrinsic and intrinsic functional architectures of the human brain are not equivalent, Cereb. Cortex, vol.23, pp.223-229, 2013.

V. Menon and L. Q. Uddin, Saliency, switching, attention and control: a network model of insula function, Brain Struct. Funct, vol.214, pp.655-667, 2010.

C. Miall, 10 000 hours to perfection, Nat. Neurosci, vol.16, pp.1168-1169, 2013.

Y. Nigmatullina, P. J. Hellyer, P. Nachev, D. J. Sharp, and B. M. Seemungal, The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in dancers, Cereb. Cortex, vol.25, pp.554-562, 2015.

J. X. O'reilly, C. F. Beckmann, V. Tomassini, N. Ramnani, and H. Johansen-berg, Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity, Cereb. Cortex, vol.20, pp.953-965, 2010.

K. I. Paul and F. Cnossen, A cognitive neuroscience perspective on skill acquisition in cather-based interventions, pp.35-55, 2018.

M. A. Pavlova, A. N. Sokolov, and C. Bidet-ildei, Sex differences in the neuromagnetic cortical response to biological motion, Cereb. Cortex, vol.25, pp.3468-3474, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01662974

V. B. Penhume and C. J. Steele, Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning, Behav. Brain Res, vol.226, pp.579-591, 2012.

K. Petrini, F. E. Pollick, S. Dahl, P. Mcaleer, L. S. Mckay et al., Actionexpertise reducesbrainactivity for audiovisual matching actions: an fMRI study with expert drummers, Neuroimage, vol.56, pp.1480-1492, 2011.

N. Picard, Y. Matsuzaka, and P. L. Strick, Extended practice of a motor skill is associated with reduced metabolic activity in M1, Nat. Neurosci, vol.16, pp.1340-1347, 2013.

R. A. Poldrack, Is "efficiency" a useful concept in cognitive neuroscience?, Dev. Cogn. Neurosci, vol.11, pp.12-17, 2015.

R. A. Poldrack, J. E. Desmond, G. H. Glover, and J. D. Gabrieli, The neural basis of visual skill learning: an fMRI study of mirror reading, Cereb. Cortex, vol.8, pp.1-10, 1998.

A. Reed, J. Riley, R. Carraway, A. Carrasco, C. Perez et al., Cortical map plasticity improves learning but is not necessary for improved performance, Neuron, vol.70, pp.121-131, 2011.

A. Roebroeck, E. Formisano, and R. Goebel, Mapping directed influence over the brain using Granger causality and fMRI, Neuroimage, vol.25, pp.230-242, 2005.

W. W. Seeley, V. Menon, A. F. Schatzberg, J. Keller, G. H. Glover et al., Dissociable intrinsic connectivity networks for salience processing and executive control, J. Neurosci, vol.27, pp.2349-2356, 2007.

G. Shen, J. Zhang, H. Wang, Y. Wu, Y. Zeng et al., Altered white matter architecture among college athletes: a diffusion tensor imaging study, J. East China Normal Univ. (Nat. Sci.), vol.4, pp.94-101, 2014.

V. J. Schmithorst and M. Wilke, Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study, Neurosci. Lett, vol.321, pp.57-60, 2002.

J. Scholz, M. C. Klein, T. E. Behrens, and H. Johansen-berg, Training induces changes in white matter architecture, Nat. Neurosci, vol.12, pp.1370-1371, 2009.

P. Skudlarski, K. Jagannathan, V. D. Calhoun, M. Hampson, B. A. Skudlarska et al., Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations, Neuroimage, vol.43, pp.554-561, 2008.

S. M. Smith, P. T. Fox, K. L. Miller, D. C. Glahn, P. M. Fox et al., Correspondence of the brain's functional architecture during activation and rest, PNAS USA, vol.106, pp.13040-13045, 2009.

E. R. Sowell, B. S. Peterson, E. Kan, R. P. Woods, J. Yoshii et al., Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age, Cereb. Cortex, vol.17, pp.1550-1560, 2007.

C. J. Stam and E. C. Van-straaten, The organization of physiological brain networks, Clin. Neurophysiol, vol.123, pp.1067-1087, 2012.

C. J. Steele, J. Scholz, G. Douaud, H. Johansen-berg, and V. B. Penhune, Structural correlates of skilled performance on a motor sequence task, Front. Hum. Neurosci, vol.6, p.289, 2012.

K. E. Stephan, L. M. Harrison, S. J. Kiebel, O. David, W. D. Penny et al., Dynamic causal models of neural system dynamics: current state and future extensions, J. Biosci, vol.32, pp.129-144, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00381759

C. J. Stoodley and J. D. Schmahmann, Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies, Neuroimage, vol.44, pp.489-501, 2009.

J. D. Swisher, J. C. Gatenby, J. C. Gore, B. A. Wolfe, C. H. Moon et al., Multiscale pattern analysis of orientation-selective activity in the primary visual cortex, J. Neurosci, vol.30, pp.325-330, 2010.

M. Takahashi, D. B. Hackney, G. Zhang, S. L. Wehrli, A. C. Wright et al., Magnetic resonance microimaging of intraaxonal water diffusion in live excised lamprey spinal cord, PNAS USA, vol.99, pp.16192-16196, 2002.

X. Y. Tan, Y. L. Pi, J. Wang, X. P. Li, L. L. Zhang et al., Morphological and functional differences between athletes and novices in cortical neuronal networks, Front. Hum. Neurosci, vol.10, 2017.

M. Taubert, B. Draganski, A. Anwander, K. Muller, A. Horstmann et al., Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections, J. Neurosci, vol.30, pp.11670-11677, 2010.

M. Taubert, G. Lohmann, D. S. Margulies, A. Villringer, and P. Ragert, Long-term effects of motor training on resting-state networks and underlying brain structure, Neuroimage, vol.57, pp.1492-1498, 2011.

D. Tomasi and N. D. Volkow, Gender differences in brain functional connectivity density, Magn. Reson. Med, vol.33, pp.1358-1372, 2004.

D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau et al., High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity, Magn. Reson. Med, vol.48, pp.577-582, 2002.

F. Tyc and A. Boyadjian, Cortical plasticity and motor activity studied with transcranial magnetic stimulation, Rev. Neurosci, vol.17, pp.469-496, 2006.

P. Van-donkelaar, J. F. Stein, R. E. Passingham, and R. C. Miall, Neuronal activity in the primate motor thalamus during visually triggered and internally generated limb movements, J. Neurophysiol, vol.82, pp.934-945, 1999.

V. Van-veel, J. D. Cohen, M. M. Botvinick, V. A. Stenger, and C. S. Carter, Anterior cingulate cortex, conflict monitoring, and levels of processing, Neuroimage, vol.14, pp.1302-1308, 2001.

C. Voelcker-rehage and C. Niemann, Structural and functional brain changes related to different types of physical activity across the life span, Neurosci. Biobehav. Rev, vol.37, pp.2268-2295, 2013.

Z. Wang, Z. Dai, G. Gong, C. Zhou, and Y. He, Understanding structural-functional relationships in the human brain: a large-scale network perspective, Neuroscientist, vol.21, pp.290-305, 2014.

B. Wang, Y. Fan, M. Lu, S. Li, Z. Song et al., Brain anatomical networks in world class gymnasts: a DTI tractography study, Neuroimage, vol.65, pp.476-487, 2013.

B. Wang, M. Lu, Y. Fan, X. Wen, R. Zhang et al., Exploring brain functional plasticity in world class gymnasts: a network analysis, Brain Struct. Funct, vol.221, pp.3503-3519, 2016.

Z. Wang, Z. Dai, G. Gong, C. Zhou, and Y. He, Understanding structural-functional relationships in the human brain: a large-scale network perspective, Neuroscientist, vol.21, pp.290-305, 2015.

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, vol.393, pp.440-442, 1998.

V. J. Wedeen, P. Hagmann, W. Y. Tseng, T. G. Reese, and R. M. Weisskoff, Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging, Magn. Reson. Med, vol.54, pp.1377-1386, 2005.

G. Wei, J. Luo, and Y. Li, Brain structure in diving players on MR imaging studied with voxel-based morphometry, Prog. Nat. Sci, vol.19, pp.1397-1402, 2009.

G. Wei, Y. Zhang, T. Jiang, and J. Luo, Increased cortical thickness in sports experts: a comparison of diving players with the controls, PLoS One, vol.6, 2011.

E. Wenger, C. Brozzoli, U. Lindenberger, and M. Lovden, Expansion and renormalization of human brain structure during skill acquisition, Trends Cogn. Sci, vol.21, pp.930-939, 2017.

E. Wenger, S. Kuhn, J. Verrel, J. Martensson, N. C. Bodammer et al., Repeated structural imaging reveals nonlinear progression of experience-dependent volume changes in human motor cortex, Cereb. Cortex, vol.27, pp.2911-2925, 2017.

T. Wiestler and J. Diedrichsen, Skill learning strengthens cortical representations of motor sequences. eLIFE 2, e00801, 2013.

S. F. Witelson, I. I. Glezer, and D. L. Kigar, Women have greater density of neurons in posterior temporal cortex, J. Neurosci, vol.15, pp.3418-3428, 1995.

K. Woollett and E. A. Maguire, Acquiring "the knowledge" of London's layout drives structural brain changes, Curr. Biol, vol.21, pp.2109-2114, 2011.

J. Xiong, L. Ma, B. Wang, S. Narayana, E. P. Duff et al., Longterm motor training induced changes in regional cerebral blood flow in both task and resting states, Neuroimage, vol.45, pp.75-82, 2009.

T. Xu, X. Yu, A. J. Perlik, W. F. Tobin, J. A. Zweig et al., Rapid formation and selective stabilisation of synapses for enduring motor memories, Nature, vol.462, pp.915-919, 2009.

J. Yang, The influence of motor expertise on the brain activity of motor task performance: a meta-analysis of functional magnetic resonance imaging studies, Cogn. Affect Behav, vol.15, pp.381-394, 2015.

R. J. Zatorre, J. L. Chen, and V. B. Penhune, When the brain plays music: auditorymotor interactions in music perception and production, Nat. Rev. Neurosci, vol.8, pp.547-558, 2007.

R. J. Zatorre, R. D. Fields, and H. Johansen-berg, Plasticity in gray and white: neuroimaging changes in brain structure during learning, Nat. Neurosci, vol.15, pp.528-536, 2012.

J. Zhang, X. Dong, L. Wang, L. Zhao, Z. Weng et al., Gender differences in global functional connectivity during facial emotion processing: a visual MMN study, Front. Behav. Neurosci, vol.12, 2018.