J. M. Bland and D. G. Altman, Regression towards the mean, BMJ, vol.308, p.1499, 1994.

D. L. Bonetti and W. G. Hopkins, Sea-level exercise performance following adaptation to hypoxia: a meta-analysis, Sports Med, vol.39, pp.107-127, 2009.

F. Brocherie, O. Girard, R. Faiss, and G. P. Millet, Effects of Repeated-Sprint Training in Hypoxia on Sea-Level Performance: A Meta-Analysis, Sports Med, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02545023

F. Brocherie, G. P. Millet, A. Hauser, T. Steiner, J. Rysman et al., Live High-Train Low and High" Hypoxic Training Improves Team-Sport Performance, Med Sci Sports Exerc, vol.47, pp.2140-2149, 2015.

R. F. Chapman, J. Stray-gundersen, and B. D. Levine, Individual variation in response to altitude training, J Appl Physiol, vol.85, pp.1448-1456, 1985.

B. Friedmann, F. Frese, E. Menold, F. Kauper, J. Jost et al., Individual variation in the erythropoietic response to altitude training in elite junior swimmers, Br J Sports Med, vol.39, pp.148-153, 2005.

F. Galton, Regression towards mediocrity in hereditary stature, The Journal of the Anthropological Institute of Great Britain and Ireland, vol.15, pp.246-263, 1886.

L. A. Garvican, D. T. Martin, S. A. Clark, W. F. Schmidt, and C. J. Gore, Variability of erythropoietin response to sleeping at simulated altitude: a cycling case study, Int J Sports Physiol Perform, vol.2, pp.327-331, 2007.

L. A. Garvican, D. T. Martin, M. Quod, B. Stephens, A. Sassi et al., Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists, Scand J Med Sci Sports, vol.22, pp.95-103, 2012.

G. Lewis, L. A. Clark, S. A. Polglaze, T. Mcfadden, G. Gore et al., Ten days of simulated live high:train low altitude training increases Hbmass in elite water polo players, Br J Sports Med, vol.47, issue.1, pp.70-73, 2013.

G. Lewis, L. A. Sharpe, K. Gore, and C. J. , Time for a new metric for hypoxic dose?, J Appl Physiol, vol.121, pp.352-355, 1985.

O. Girard, M. Amann, R. Aughey, F. Billaut, D. J. Bishop et al., Position statement--altitude training for improving team-sport players' performance: current knowledge and unresolved issues, Br J Sports Med, vol.47, pp.8-16, 2013.

C. J. Gore, A. Hahn, A. Rice, P. Bourdon, S. Lawrence et al., Altitude training at 2690m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists, J Sci Med Sport, vol.1, pp.156-170, 1998.

C. J. Gore, K. Sharpe, L. A. Garvican-lewis, P. U. Saunders, C. E. Humberstone et al., Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis, Br J Sports Med, vol.47, pp.31-39, 2013.

A. Hauser, L. Schmitt, S. Troesch, J. J. Saugy, R. Cejuela-anta et al., Similar Hemoglobin Mass Response in Hypobaric and Normobaric Hypoxia in Athletes, Med Sci Sports Exerc, vol.48, pp.734-741, 2016.

A. Hauser, S. Troesch, J. J. Saugy, L. Schmitt, R. Cejuela-anta et al., Individual hemoglobin mass response to normobaric and hypobaric "live high-train low": A one-year crossover study, Journal of Applied Physiology, vol.123, pp.387-393, 2017.

K. Heinicke, B. Wolfarth, P. Winchenbach, B. Biermann, A. Schmid et al., Blood volume and hemoglobin mass in elite athletes of different disciplines, Int J Sports Med, vol.22, pp.504-512, 2001.

W. G. Hopkins, Measures of Reliability in Sports Medicine and Science, Sports Med, vol.30, pp.1-15, 2000.

W. G. Hopkins, S. W. Marshall, A. M. Batterham, and J. Hanin, Progressive statistics for studies in sports medicine and exercise science, Med Sci Sports Exerc, vol.41, pp.3-13, 2009.

C. E. Humberstone-gough, P. U. Saunders, D. L. Bonetti, S. Stephens, N. Bullock et al., Comparison of Live High: Train Low Altitude and Intermittent Hypoxic Exposure, J Sports Sci Med, vol.12, pp.394-401, 2013.

M. Inness, F. Billaut, and R. J. Aughey, Live-high train-low improves repeated time-trial and Yo-Yo IR2 performance in sub-elite team-sport athletes, J Sci Med Sport, vol.20, pp.190-195, 2016.

B. D. Levine and J. Stray-gundersen, Point: positive effects of intermittent hypoxia (live high:train low) on exercise performance are mediated primarily by augmented red cell volume, J Appl Physiol, vol.99, pp.2053-2055, 1985.

C. Lundby, G. P. Millet, J. A. Calbet, P. Bartsch, and A. W. Subudhi, Does 'altitude training' increase exercise performance in elite athletes?, Br J Sports Med, vol.46, pp.792-795, 2012.

B. D. Mclean, D. Buttifant, C. J. Gore, K. White, and J. Kemp, Year-to-year variability in haemoglobin mass response to two altitude training camps, Br J Sports Med, vol.47, issue.1, pp.51-58, 2013.

B. D. Mclean, C. J. Gore, and J. Kemp, Application of 'Live Low-Train High' for Enhancing Normoxic Exercise Performance in Team Sport Athletes, Sports Med, vol.44, pp.1275-1287, 2014.

G. P. Millet, F. Brocherie, O. Girard, J. P. Wehrlin, S. Troesch et al., Commentaries on Viewpoint: Time for a new metric for hypoxic dose?, J Appl Physiol, vol.121, pp.356-358, 1985.
URL : https://hal.archives-ouvertes.fr/hal-01793494

G. P. Millet, B. Roels, L. Schmitt, X. Woorons, and J. P. Richalet, Combining hypoxic methods for peak performance, Sports Med, vol.40, pp.1-25, 2010.

A. L. Orsama, E. Mattila, M. Ermes, M. Van-gils, B. Wansink et al., Weight rhythms: weight increases during weekends and decreases during weekdays, Obes Facts, vol.7, pp.36-47, 2014.

P. Robach and C. Lundby, Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass?, J Med Sci Sports, vol.22, pp.303-305, 2012.

J. J. Saugy, L. Schmitt, R. Cejuela, R. Faiss, A. Hauser et al., Comparison of "Live High-Train Low" in normobaric versus hypobaric hypoxia, PLoS One, vol.9, 2014.

W. Schmidt and N. Prommer, The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely, Eur J Appl Physiol, vol.95, pp.486-495, 2005.

W. Schmidt and N. Prommer, Effects of various training modalities on blood volume, Scand J Med Sci Sports, vol.18, issue.1, pp.57-69, 2008.

C. Siebenmann, P. Robach, R. A. Jacobs, P. Rasmussen, N. Nordsborg et al., Live high-train low" using normobaric hypoxia: a doubleblinded, placebo-controlled study, J Appl Physiol, vol.112, pp.106-117, 1985.

T. Steiner and J. P. Wehrlin, Does hemoglobin mass increase from age 16 to 21 and 28 in elite endurance athletes?, Med Sci Sports Exerc, vol.43, pp.1735-1743, 2011.

N. B. Wachsmuth, M. Kley, H. Spielvogel, R. J. Aughey, C. J. Gore et al., Changes in blood gas transport of altitude native soccer players near sea-level and sea-level native soccer players at altitude (ISA3600), Br J Sports Med, vol.47, pp.93-99, 2013.

N. B. Wachsmuth, C. Volzke, N. Prommer, A. Schmidt-trucksass, F. Frese et al., The effects of classic altitude training on hemoglobin mass in swimmers, Eur J Appl Physiol, vol.113, pp.1199-1211, 2013.

J. P. Wehrlin, B. Marti, and J. Hallen, Hemoglobin Mass and Aerobic Performance at Moderate Altitude in Elite Athletes, Adv Exp Med Biol, vol.903, pp.357-374, 2016.

R. L. Wilber, Application of altitude/hypoxic training by elite athletes, Med Sci Sports Exerc, vol.39, pp.1610-1624, 2007.

R. L. Wilber, J. Stray-gundersen, and B. D. Levine, Effect of hypoxic "dose" on physiological responses and sea-level performance, Med Sci Sports Exerc, vol.39, pp.1590-1599, 2007.