Y. Armon, D. M. Cooper, R. Flores, S. Zanconato, and T. J. Barstow, Oxygen uptake dynamics 412 during high-intensity exercise in children and adults, J Appl Physiol, vol.70, pp.841-848, 1991.

N. Armstrong and J. O. Welsman, Sex-Specific Longitudinal Modeling of Short-Term Power 415 in 11-to 18-Year-Olds, Med Sci Sports Exerc, vol.51, pp.1055-1063, 2019.

J. Bangsbø, L. Michalsik, and A. Petersen, Accumulated O2 deficit during intense exercise and 418 muscle characteristics of elite athletes, Int J Sports Med, vol.14, pp.207-213, 1993.

R. Beneke, C. Pollmann, I. Bleif, R. M. Leithauser, and M. Hutler, , p.421, 2002.

, Anaerobic Test for humans?, Eur J Appl Physiol, vol.87, pp.388-392

A. Berg, S. S. Kim, and J. Keul, Skeletal muscle enzyme activities in healthy young subjects Int 424, J Sports Med, vol.7, pp.236-239, 1986.

A. Birat, Effect of Drop Height on Vertical Jumping Performance in Pre-, Circa-, 426 and Post-Pubertal Boys and Girls, Pediatr Exerc Sci, vol.32, pp.23-29, 2020.

J. S. Carlson and G. A. Naughton, An examination of the anaerobic capacity of children using 428 maximal accumulated oxygen deficit, Pediatr Exerc Sci, vol.5, pp.60-71, 1993.

P. E. Di-prampero, Energetics of muscular exercise, Rev Physiol Biochem Pharmacol, vol.430, pp.143-222, 1981.

H. M. Carvalho, M. Coelho-e-silva, J. Valente-dos-santos, R. S. Goncalves, and R. Philippaerts, Malina 432 R (2012) Scaling lower-limb isokinetic strength for biological maturation and body size 433 in adolescent basketball players, Eur J Appl Physiol, vol.112, pp.2881-2889

B. Emmett and P. W. Hochachka, Scaling of oxidative and glycolytic enzymes in mammals 436, Respir Physiol, vol.45, pp.261-272, 1981.

B. O. Eriksson, P. D. Gollnick, and B. Saltin, Muscle metabolism and enzyme activities after 438 training in boys 11-13 years old, Acta Physiol Scand, vol.87, pp.485-497, 1973.

B. O. Eriksson, J. Karlsson, and B. Saltin, Muscle metabolites during exercise in pubertal boys 441, 1971.

, Acta Paediatr Scand Suppl, vol.217, pp.154-157

G. Falgairette, M. Bedu, N. Fellmann, E. Van-praagh, and J. Coudert, Bio-energetic profile in 443 144 boys aged from 6 to 15 years with special reference to sexual maturation, Eur J Appl 444 Physiol Occup Physiol, vol.62, pp.151-156, 1991.

N. Fellmann, M. Bedu, H. Spielvogel, G. Falgairette, E. Van-praagh et al., , p.446, 1988.

, Anaerobic metabolism during pubertal development at high altitude, J Appl Physiol, vol.447, pp.1382-1386, 1985.

J. Fransen, Improving the Prediction of Maturity From Anthropometric Variables 449 Using a Maturity Ratio, Pediatr Exerc Sci, vol.30, pp.296-307, 2018.

P. B. Gastin, Energy system interaction and relative contribution during maximal exercise 451, Sports Med, vol.31, pp.725-741, 2001.

P. D. Gollnick, R. B. Armstrong, S. Cwt, K. Piehl, and B. Saltin, Enzyme activity and fiber 453 composition in skeletal muscle of untrained and trained men, J Appl Physiol, vol.33, p.454, 1972.

S. Green and B. T. Dawson, Methodological effects on the VO2-power regression and the 456 accumulated O2 deficit, Med Sci Sports Exerc, vol.28, pp.392-397, 1996.

H. Hebestreit, F. Meyer, H. Htay, and G. J. Heigenhauser, Bar-Or O (1996) Plasma metabolites, volume 458 and electrolytes following 30-s high-intensity exercise in boys and men, Eur J Appl 459 Physiol Occup Physiol, vol.72, pp.563-569

M. Jensen-urstad, J. Svedenhag, and K. Sahlin, Effect of muscle mass on lactate formation 461 during exercise in humans, Eur J Appl Physiol Occup Physiol, vol.69, pp.189-195, 1994.

J. J. Kaczor, W. Ziolkowski, J. Popinigis, and M. A. Tarnopolsky, Anaerobic and aerobic enzyme 464 activities in human skeletal muscle from children and adults, Pediatr Res, vol.57, 2005.

J. Kappenstein, F. Engel, J. Fernandez-fernandez, and A. Ferrauti, Effects of active and passive 467 recovery on blood lactate and blood pH after a repeated sprint protocol in children and 468 adults, Pediatr Exerc Sci, vol.27, pp.77-84, 2015.

H. Maciejewski, M. Bourdin, J. R. Lacour, C. Denis, B. Moyen et al., Lactate 470 accumulation in response to supramaximal exercise in rowers Scand, J Med Sci Sports, vol.471, pp.585-592, 2013.

H. Maciejewski, A. Rahmani, F. Chorin, J. Lardy, C. Giroux et al., The 1,500-m Rowing 473 Performance is Highly Dependent on Modified Wingate Anaerobic Test Performance 474 in National-Level Adolescent Rowers, Pediatr Exerc Sci, vol.28, p.475, 2016.

A. Mader, U. Hartmann, and W. Hollmann, Der Einfluß der Ausdauer auf die 6minütige 477 maximale anaerobe und aerobe Arbeitskapazität eines Eliteruderers, Rudern, 1988.

. Springer, , pp.62-78

J. I. Medbø, A. C. Mohn, I. Tabata, R. Bahr, O. Vaage et al., Anaerobic capacity 480 determined by maximal accumulated O2 deficit, J Appl Physiol, vol.64, 1988.

R. L. Mirwald, A. D. Baxter-jones, D. A. Bailey, and G. P. Beunen, An assessment of maturity from 483 anthropometric measurements, Med Sci Sports Exerc, vol.34, pp.689-694, 2002.

G. A. Naughton, J. S. Carlson, D. C. Buttifant, S. E. Selig, K. Meldrum et al., , p.485, 1997.

, Accumulated oxygen deficit measurements during and after high-intensity exercise in 486 trained male and female adolescents, Eur J Appl Physiol Occup Physiol, vol.76, pp.525-531

A. M. Nevill and R. L. Holder, Modelling Maximum Oxygen Uptake-a Case-Study in 489 Nonlinear Regression Model Formulation and, Comparison Appl Statist, vol.43, pp.653-666, 1994.

A. M. Nevill, R. Ramsbottom, and C. Williams, Scaling physiological measurements for 491 individuals of different body size, Eur J Appl Physiol Occup Physiol, vol.65, pp.110-117, 1992.

D. H. Paterson, D. A. Cunningham, and L. A. Bumstead, Recovery O2 and blood lactic acid: 493 longitudinal analysis in boys aged 11 to 15 years, Eur J Appl Physiol Occup Physiol, vol.494, pp.93-99, 1986.

S. Ratel, P. Duche, A. Hennegrave, E. Van-praagh, and M. Bedu, Acid-base balance during 496 repeated cycling sprints in boys and men, J Appl Physiol, vol.92, pp.479-485, 1985.

S. Ratel and V. Martin, Les exercices anaérobies lactiques chez les enfants : la fin d'une idée 499 reçue ?, Science & Sports, vol.27, pp.195-200, 2012.

S. Ratel, C. A. Williams, J. Oliver, and N. Armstrong, Effects of age and mode of exercise on 501 power output profiles during repeated sprints, Eur J Appl Physiol, vol.92, pp.204-210, 2004.

B. Saltin, Anaerobic capacity: past, present and prospective Biochemistry of exercise VII 504, vol.21, pp.387-421, 1990.

E. Shargal, R. Kislev-cohen, L. Zigel, S. Epstein, R. Pilz-burstein et al., Age-506 related maximal heart rate: examination and refinement of prediction equations, J Sports, p.507, 2015.

, Med Phys Fitness, vol.55, pp.1207-1218

*. ,

. ***,

. $$$,

, MPO: mean power output calculated over the entire test; AODtot: total accumulated oxygen deficit; AODgly: 528 glycolysis-derived accumulated oxygen deficit; OEphos+ox: phosphagen-and blood O2 stores-derived oxygen 529 equivalent; [La]max: maximal blood lactate concentration; pHmin: minimal blood pH